
Otto Moerbeek otto@openbsd.org

BOOTSTRAPPING TIME
ON OPENBSD

BSD derivatie, focus on security

Many techniques, e.g. privilege separated daemons

Sane defaults

If a service is enabled out of the box, there are extra requirements

Useful for a very large fraction of users

Even more focus on security, including architecture and implementation

OPENBSD

Get time from (battery backed) Real Time Clock

If that fails: read time from root filesystem last mounted field

Consequence: initial time is either mostly correct or behind

When OpenNTPd starts, set time based on NTP but only if -s is used, which is not
default

OPENBSD INITIAL TIME AS IT USED TO BE

Do not fully trust NTP replies necessarily

Get correct time on boot with a high level of trust

Do not rely on battery backed up RTC being available

Think cheap boards or old machines where battery ran out

Time based validations complicate matters, but make it work with a DNSSEC enabled
resolver running on the same machine

GOALS: A BETTER TIME BOOTSTRAP

Quite old, RFC 958 from 1985, latest RFC 5905 from 2010 (plus some more recent
followup RFCs)

Follows design principles which are also found in DNS

Can be secured with shared keys

RFC 8915 defines NTS, Network Time Security that includes a key establishment protocol

Simple variant, RFC 4330, concerned with client role. This is mostly what OpenBSD’s
ntpd does

NTP PROTOCOL

Privilege separated

Process handling network I/O

Process adjusting time

Process doing (asynchronous) DNS requests

Processes handling constraints

All with minimal permissions (pledged) and minimal access to file system

OPENBSD’S IMPLEMENTATION

Initially no cryptographic measures: shared keys not ideal and NTS complex, not
widely used

Basic spoof protection: expect the server to answer with a cookie we sent earlier

Re-use (misuse?) a field for that

SAFETY MEASURES

 /*
 * Send out a random 64-bit number as our transmit time. The NTP
 * server will copy said number into the originate field on the
 * response that it sends us. This is totally legal per the SNTP spec.
 *
 * The impact of this is two fold: we no longer send out the current
 * system time for the world to see (which may aid an attacker), and
 * it gives us a (not very secure) way of knowing that we're not
 * getting spoofed by an attacker that can't capture our traffic
 * but can spoof packets from the NTP server we're communicating with.
 *
 * Save the real transmit timestamp locally.
 */

 p->query.msg.xmttime.int_partl = arc4random();
 p->query.msg.xmttime.fractionl = arc4random();

TRANSMIT TIME AS COOKIE

Actually outside of scope of SNTP

“Full” NTP peer selection is quite complex, OpenNTPd uses a simple approach

Poll several servers

Filter peers that are unreliable in replying or replied with bad cookie

Select “median” time

BUILDING TRUST

Extra measure

Independent of NTP protocol: different protocol, different code, different time source

Ask a few HTTPS servers for time

It’s already in the reply header!

Low resolution, but used to filter out bad NTP replies

CONSTRAINTS

Time dependent!

Use time in reply header to validate certificate time validity

This is a bit weird, requires a certificate valid at the time the server is telling us

Talking to multiple widely used https servers strengthens this check at least a bit

More on this later

HTTPS CERTIFICATE CHECK

NTP servers and constraint sources specified by IP or name

So we have to resolve names, typically using DNS

DNS resolver on other host: assume it has the right time for DNSSEC validation

Hardest case: resolver on same host with DNSSEC validation enabled: bootstrap issue

DNS DEPENDENCY

DNSSEC signatures have a validity period

DNS resolver must check these

Luckily, a client can signal to skip the DNSSEC validation

CD flag: Check Disabled

No API for that! :-(

DNSSEC

===
RCS file: /cvs/src/include/resolv.h,v
retrieving revision 1.21
retrieving revision 1.22
diff -u -r1.21 -r1.22
--- src/include/resolv.h 2016/09/12 19:35:311.21
+++ src/include/resolv.h 2019/01/14 06:23:061.22
@@ -1,4 +1,4 @@
-/* $OpenBSD: resolv.h,v 1.21 2016/09/12 19:35:31 guenther Exp $ */
+/* $OpenBSD: resolv.h,v 1.22 2019/01/14 06:23:06 otto Exp $ */

 /*
 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
@@ -190,6 +190,7 @@
 #define RES_USE_EDNS0 0x40000000 /* use EDNS0 */
 /* DNSSEC extensions: use higher bit to avoid conflict with ISC use */
 #define RES_USE_DNSSEC 0x20000000 /* use DNSSEC using OK bit in OPT */
+#define RES_USE_CD 0x10000000 /* set Checking Disabled flag */

 #define RES_DEFAULT (RES_RECURSE | RES_DEFNAMES | RES_DNSRCH)

ADD API

int
host_dns(const char *s, int synced, struct ntp_addr **hn)
{
 int error, save_opts;

 log_debug("trying to resolve %s", s);
 error = host_dns1(s, hn, 0);
 if (!synced && error <= 0) {
 log_debug("no luck, trying to resolve %s without checking", s);
 save_opts = _res.options;
 _res.options |= RES_USE_CD;
 error = host_dns1(s, hn, 1);
 _res.options = save_opts;
 }
 log_debug("resolve %s done: %d", s, error);
 return error;
}

USE CD BIT WHEN RELEVANT

Get time from RTC. If that fails: read time from root filesystem last mounted field

Consequence: initial time is either mostly correct or behind

When OpenNTPd starts, it gets constraints and will set (bump) time based on NTP data if

Time shift is moving forward compared to initial time

Constraints are set and met (or trusted NTP peers are configured)

Time shift is “large” (> 1 minute)

Otherwise, and after initial set, do a gradual adjust, speeding the clock up or slowing it down

OPENBSD INITIAL TIME REVAMPED

When synced: re-resolve and refetch constraints

With no Checking Disabled DNS fallback

With standard check of certificate chain

ONE MORE TIME

ntpd enabled by default

you can be pretty sure that time is set based on trusted sources if you have net

default config uses assorted NTP servers and assorted constraints sources

STATE SINCE A FEW RELEASES

$OpenBSD: ntpd.conf,v 1.16 2019/11/06 19:04:12 deraadt Exp $
#
See ntpd.conf(5) and /etc/examples/ntpd.conf

servers pool.ntp.org
server time.cloudflare.com
sensor *

constraint from "9.9.9.9" # quad9 v4 without DNS
constraint from "2620:fe::fe" # quad9 v6 without DNS
constraints from "www.google.com" # intentionally not 8.8.8.8

NTPD DEFAULT ON

Thanks to: Henning Brauer, Reyk Floeter, Alexander Guy and others

You can reach me on otto@openbsd.org

Mastodon: @otto@bsd.network

QUESTIONS?

mailto:otto@openbsd.org
mailto:otto@bsd.network

