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Calculating Energy Consumption of Software

Energy Consumption = Power × Latency

Power is determined by hardware
Latency is determined by software
Programmers often optimize latency using well-established tools
(e.g., perf) and metrics (e.g., CPU clock cycles)
Question: Tools to measure application’s energy?
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Energy Consumption = 15 W × 5 ms = 75 mJ
Problem: Does not reflect ground reality!
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Calculation Model
▶ The model assumes linear power draw

Figure: CPU Power Consumption over time

▶ Limitation 1: Power consumption (on y-axis) is not linear over
time (on x-axis)
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▶ Limitation 2: We do not have uniform interfaces and formats
needed to measure power reliably across different platforms
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Calculation Model

▶ The model focuses on the CPU

▶ Limitation 3: What about devices like memory (DRAM),
screen, and network cards?

▶ Experiments are contrary to assumptions, findings similar to
Google [1]
[1] Barroso, Luiz André, Urs Hölzle, and Parthasarathy Ranganathan. "The
datacenter as a computer: Designing warehouse-scale machines." Synthesis
Lectures on Computer Architecture 13.3 (2018): i-189.
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energy consumption of the applications on Linux

Report the statistics to the

▶ End-users: In an easy-to-understand and useful format
▶ Programmers: Via APIs that improve programmer actionability
▶ System Designers: To enable iterating over low-energy designs
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▶ Power models = How we reason about and estimate a device’s
power draw over time

▶ Power models are often not available or poorly understood for
many devices, e.g., DRAM

▶ Tools can be built to accurately calculate power using the
models, e.g., nvidia-smi

▶ Takeaway: We need accurate models and reliable tools to
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PowerTOP

It is possible to use Powertop to view the "power estimate" of a
process/device/interrupt/timer.

Challenges:

1. Power estimate is a discrete-time event. Energy consumption is a
continuous process with a higher correlation to battery drain.

2. Vendor-specific implementation
3. Actionability of this data for end-users and programmers

Process X consumes 1.45 Watts. What should the programmer do to optimize it?
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Device-Specific Measurements

Goal: Determine regression parameters

Algorithm:

1. Minimize system load by turning off all devices
2. Measure battery drain rate over multiple intervals
3. Turn on a single target device
4. Sweep target device parameters from low to high while measuring

battery drain
5. Turn off target device or set parameter to low
6. Repeat step 3-5 for all target devices
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Kernel Process Accounting Infrastructure

Goal: Determine regression inputs

Method:

▶ Poll the process accounting infrastructure to determine CPU time
allocation, network activity, open file handles, memory, disk usage,
network, and screen wakeups.

▶ Input the measured values in the regression model to predict energy
consumption
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Challenge: System Design

▶ Estimated value (All models are wrong, but some are useful.)

▶ Accuracy and Bias trade-off: Accurate models generate larger
systemic load that biases observations
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Challenge: Data Collection

▶ There are millions of devices, and billions of ICs inside these
devices. The power estimates can range across 2-3 orders of
magnitude. How can we develop accurate & reliable power
models across this diversity?

▶ Privacy concern: Should users share this data to a
"centralized" server?
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(from the model) and actual values (ground truth)
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hardware modifications?
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End-users



Programmers

Expose API for programmers: Indicate devices with high energy
consumption to allow backtracing to code

Example use-case: Energy-efficient code optimization suggestions
in the coding platform



System Designers

Expose API for system designers to enable better carbon
accounting practices with clear scope identification

Example use-case: Develop better tools to explore the design
space of performance vs energy vs carbon efficiency
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Key Takeaways

▶ We cannot improve what we cannot measure.

▶ Non-CPU system components can dominate the
overall energy consumption.
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Thank you!

Feedback/Collaboration ?
https://www.linkedin.com/in/adityamanglik/

amangli@student.ethz.ch
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Windows Energy Estimation Engine (E3) System
Design

Figure: Windows E3 System Design
Source: https://channel9.msdn.com/Events/WinHEC/2015/OWD203

https://channel9.msdn.com/Events/WinHEC/2015/OWD203


Reverse Engineering Windows’
Energy Estimation Engine: back-end

▶ The Energy Estimation Engine (E3) service runs on all Windows
devices and attributes energy consumption to individual hardware
components and applications.

▶ Why software-based attribution: Few PCs in the market have
such dedicated chips: According to reports, 99% of current
devices in market lack dedicated current and voltage monitors.

▶ Software-based power attribution provides about 85% accuracy
compared to a 98% accuracy rate from systems equipped with
dedicated current and voltage monitors (e.g., Microsoft Surface)

▶ Microsoft claims that they prioritize data from devices with
dedicated chips while developing the software-based power
models.
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E3 System Design
▶ Power profiles: Windows has separate power profiles for individual

hardware devices like network, disks etc. Further, profiles
specialize for Laptops, Tablets, Phones devices etc.

▶ The following data columns can be observed in the E3 Service
Report (shown below): ScreenOnEnergy, CPUEnergy, SoCEnergy,
DisplayEnergy, DiskEnergy, MBBEnergy, NetworkEnergy,
EmiEnergy, and many more.

Figure: Data dump from E3 CLI



System design goals

The framework should be:
Accurate: Eliminate anomalous values

Portable: Able to function across different hardware vendors2

Independent of extra measurement devices
Transparent: Should not induce any load on the target system1

Reliable: Repeat experiments should yield similar results

1Stretch goal



System design goals

The framework should be:
Accurate: Eliminate anomalous values
Portable: Able to function across different hardware vendors2

Independent of extra measurement devices
Transparent: Should not induce any load on the target system1

Reliable: Repeat experiments should yield similar results

1Stretch goal



System design goals

The framework should be:
Accurate: Eliminate anomalous values
Portable: Able to function across different hardware vendors2

Independent of extra measurement devices

Transparent: Should not induce any load on the target system1

Reliable: Repeat experiments should yield similar results

1Stretch goal



System design goals

The framework should be:
Accurate: Eliminate anomalous values
Portable: Able to function across different hardware vendors2

Independent of extra measurement devices
Transparent: Should not induce any load on the target system1

Reliable: Repeat experiments should yield similar results

1Stretch goal



System design goals

The framework should be:
Accurate: Eliminate anomalous values
Portable: Able to function across different hardware vendors2

Independent of extra measurement devices
Transparent: Should not induce any load on the target system1

Reliable: Repeat experiments should yield similar results

1Stretch goal



Design Optimizations
Central information store to overcome randomness?

▶ Overcoming variation in values: Collect data across systems to
create a database

▶ Privacy challenges: can we do better?
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Design Considerations

▶ Reliable: Co-executing processes significantly influence power.
Solution: Energy consumption should be roughly similar.

▶ Accuracy:

▶ Challenging to isolate individual contributions as many processes use
multiple hardware devices simultaneously (CPU, GPU, Display, RAM,
SSD, Ethernet/WiFi).

▶ Hardware devices do not measure/expose individual power draw.
▶ Significant variation in data-sheets across devices and vendors.
▶ Reliable values: CPU perf counters (RAPL?) and current battery

charge (ACPI?)
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Different hardware devices

▶ CPU: Dominant factor, P-states vs C-states, interfaces (Intel
RAPL)

▶ GPU: periodic bursts of large power draw
▶ RAM: Increasing DRAM capacity is challenging due to refresh

power draw (Reference)
▶ I/O Peripherals: USB devices are polled every 5 ms
▶ Display: Often the most consistent drain
▶ Network Adaptors: Ethernet, WiFi ping frequency
▶ Disk: SSD, HDD writes are cached for bulk ops

https://appleinsider.com/articles/16/10/29/apple-limits-2016-macbook-pro-models-to-16gb-of-ram-to-maximize-battery-life


Design Considerations

▶ Hardware requirements: Cannot rely on external power monitors
▶ Transparency: Polling for values induces load on the target system
▶ Able to function across different hardware vendor APIs
▶ Actionability of data: Reporting hardware power values is "futile"

because hardware is difficult to change, but processes might be
optimized.
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