
Carbon measurement and energy attribution for
processes and hardware devices in Linux

Aditya Manglik
ETH Zürich, Switzerland

LinkedIn: linkedin.com/in/adityamanglik/
Email: amangli@ethz.ch

FOSDEM-2024
3 February, 2024



Brief Introduction

Graduate student at ETH Zürich, Switzerland

Research at the intersection of computer architecture and
operating systems



Brief Introduction

Graduate student at ETH Zürich, Switzerland

Research at the intersection of computer architecture and
operating systems



Outline

Background

Problem

Goal

Current Tools
PowerTOP

System Design

End Product

Conclusion



Background

▶ Energy sources in computing systems:
Direct: DC input / USB / Ethernet

Battery
Energy harvesting

▶ We want to use the maximum minimum amount of energy to
perform computation

▶ Battery capacity is a major design constraint and UX aspect for
any consumer device: cellphones and AR/VR headsets



Background

▶ Energy sources in computing systems:
Direct: DC input / USB / Ethernet
Battery

Energy harvesting

▶ We want to use the maximum minimum amount of energy to
perform computation

▶ Battery capacity is a major design constraint and UX aspect for
any consumer device: cellphones and AR/VR headsets



Background

▶ Energy sources in computing systems:
Direct: DC input / USB / Ethernet
Battery
Energy harvesting

▶ We want to use the maximum minimum amount of energy to
perform computation

▶ Battery capacity is a major design constraint and UX aspect for
any consumer device: cellphones and AR/VR headsets



Background

▶ Energy sources in computing systems:
Direct: DC input / USB / Ethernet
Battery
Energy harvesting

▶ We want to use the maximum minimum amount of energy to
perform computation

▶ Battery capacity is a major design constraint and UX aspect for
any consumer device: cellphones and AR/VR headsets



Background

▶ Energy sources in computing systems:
Direct: DC input / USB / Ethernet
Battery
Energy harvesting

▶ We want to use the maximum minimum amount of energy to
perform computation

▶ Battery capacity is a major design constraint and UX aspect for
any consumer device: cellphones and AR/VR headsets



Outline

Background

Problem

Goal

Current Tools
PowerTOP

System Design

End Product

Conclusion



Calculating Energy Consumption of Software

Energy Consumption = Power × Latency

Power is determined by hardware
Latency is determined by software
Programmers often optimize latency using well-established tools
(e.g., perf) and metrics (e.g., CPU clock cycles)
Question: Tools to measure application’s energy?



Calculating Energy Consumption of Software

Energy Consumption = Power × Latency
Power is determined by hardware

Latency is determined by software
Programmers often optimize latency using well-established tools
(e.g., perf) and metrics (e.g., CPU clock cycles)
Question: Tools to measure application’s energy?



Calculating Energy Consumption of Software

Energy Consumption = Power × Latency
Power is determined by hardware
Latency is determined by software

Programmers often optimize latency using well-established tools
(e.g., perf) and metrics (e.g., CPU clock cycles)
Question: Tools to measure application’s energy?



Calculating Energy Consumption of Software

Energy Consumption = Power × Latency
Power is determined by hardware
Latency is determined by software
Programmers often optimize latency using well-established tools
(e.g., perf) and metrics (e.g., CPU clock cycles)

Question: Tools to measure application’s energy?



Calculating Energy Consumption of Software

Energy Consumption = Power × Latency
Power is determined by hardware
Latency is determined by software
Programmers often optimize latency using well-established tools
(e.g., perf) and metrics (e.g., CPU clock cycles)
Question: Tools to measure application’s energy?



Calculating Energy Consumption of Software

Energy Consumption = Power × Latency

Power is reported by the CPU (e.g., RAPL interface)
Example: CPU ≈ 15 W
Latency is determined by software
Example: Application X ≈ 5 ms
Energy Consumption = 15 W × 5 ms = 75 mJ
Problem: Does not reflect ground reality!



Calculating Energy Consumption of Software

Energy Consumption = Power × Latency
Power is reported by the CPU (e.g., RAPL interface)

Example: CPU ≈ 15 W
Latency is determined by software
Example: Application X ≈ 5 ms
Energy Consumption = 15 W × 5 ms = 75 mJ
Problem: Does not reflect ground reality!



Calculating Energy Consumption of Software

Energy Consumption = Power × Latency
Power is reported by the CPU (e.g., RAPL interface)
Example: CPU ≈ 15 W

Latency is determined by software
Example: Application X ≈ 5 ms
Energy Consumption = 15 W × 5 ms = 75 mJ
Problem: Does not reflect ground reality!



Calculating Energy Consumption of Software

Energy Consumption = Power × Latency
Power is reported by the CPU (e.g., RAPL interface)
Example: CPU ≈ 15 W
Latency is determined by software

Example: Application X ≈ 5 ms
Energy Consumption = 15 W × 5 ms = 75 mJ
Problem: Does not reflect ground reality!



Calculating Energy Consumption of Software

Energy Consumption = Power × Latency
Power is reported by the CPU (e.g., RAPL interface)
Example: CPU ≈ 15 W
Latency is determined by software
Example: Application X ≈ 5 ms

Energy Consumption = 15 W × 5 ms = 75 mJ
Problem: Does not reflect ground reality!



Calculating Energy Consumption of Software

Energy Consumption = Power × Latency
Power is reported by the CPU (e.g., RAPL interface)
Example: CPU ≈ 15 W
Latency is determined by software
Example: Application X ≈ 5 ms
Energy Consumption = 15 W × 5 ms = 75 mJ

Problem: Does not reflect ground reality!



Calculating Energy Consumption of Software

Energy Consumption = Power × Latency
Power is reported by the CPU (e.g., RAPL interface)
Example: CPU ≈ 15 W
Latency is determined by software
Example: Application X ≈ 5 ms
Energy Consumption = 15 W × 5 ms = 75 mJ
Problem: Does not reflect ground reality!



Calculation Model
▶ The model assumes linear power draw

Figure: CPU Power Consumption over time

▶ Limitation 1: Power consumption (on y-axis) is not linear over
time (on x-axis)



Calculation Model
▶ The model assumes linear power draw

Figure: CPU Power Consumption over time

▶ Limitation 1: Power consumption (on y-axis) is not linear over
time (on x-axis)



Calculation Model
▶ The model assumes linear power draw

Figure: CPU Power Consumption over time

▶ Limitation 1: Power consumption (on y-axis) is not linear over
time (on x-axis)



Ground Truth

▶ Platform-specific interfaces: RAPL is available only on Intel

▶ AMD and ARM have different interfaces

▶ Limitation 2: We do not have uniform interfaces and formats
needed to measure power reliably across different platforms



Ground Truth

▶ Platform-specific interfaces: RAPL is available only on Intel
▶ AMD and ARM have different interfaces

▶ Limitation 2: We do not have uniform interfaces and formats
needed to measure power reliably across different platforms



Ground Truth

▶ Platform-specific interfaces: RAPL is available only on Intel
▶ AMD and ARM have different interfaces

▶ Limitation 2: We do not have uniform interfaces and formats
needed to measure power reliably across different platforms



Calculation Model

▶ The model focuses on the CPU

▶ Limitation 3: What about devices like memory (DRAM),
screen, and network cards?

▶ Experiments are contrary to assumptions, findings similar to
Google [1]
[1] Barroso, Luiz André, Urs Hölzle, and Parthasarathy Ranganathan. "The
datacenter as a computer: Designing warehouse-scale machines." Synthesis
Lectures on Computer Architecture 13.3 (2018): i-189.



Calculation Model

▶ The model focuses on the CPU
▶ Limitation 3: What about devices like memory (DRAM),

screen, and network cards?

▶ Experiments are contrary to assumptions, findings similar to
Google [1]
[1] Barroso, Luiz André, Urs Hölzle, and Parthasarathy Ranganathan. "The
datacenter as a computer: Designing warehouse-scale machines." Synthesis
Lectures on Computer Architecture 13.3 (2018): i-189.



Calculation Model

▶ The model focuses on the CPU
▶ Limitation 3: What about devices like memory (DRAM),

screen, and network cards?
▶ Experiments are contrary to assumptions, findings similar to

Google [1]
[1] Barroso, Luiz André, Urs Hölzle, and Parthasarathy Ranganathan. "The
datacenter as a computer: Designing warehouse-scale machines." Synthesis
Lectures on Computer Architecture 13.3 (2018): i-189.



Problem Summary

▶ We are inaccurately calculating only a fraction of the system’s
actual energy consumption!

▶ Summary: We cannot improve what we cannot measure.



Problem Summary

▶ We are inaccurately calculating only a fraction of the system’s
actual energy consumption!

▶ Summary: We cannot improve what we cannot measure.



Outline

Background

Problem

Goal

Current Tools
PowerTOP

System Design

End Product

Conclusion



Goal

Develop a framework to accurately and reliably measure the
energy consumption of the applications on Linux

Report the statistics to the

▶ End-users: In an easy-to-understand and useful format
▶ Programmers: Via APIs that improve programmer actionability
▶ System Designers: To enable iterating over low-energy designs



Goal

Develop a framework to accurately and reliably measure the
energy consumption of the applications on Linux

Report the statistics to the

▶ End-users: In an easy-to-understand and useful format
▶ Programmers: Via APIs that improve programmer actionability
▶ System Designers: To enable iterating over low-energy designs



Goal

Develop a framework to accurately and reliably measure the
energy consumption of the applications on Linux

Report the statistics to the
▶ End-users: In an easy-to-understand and useful format

▶ Programmers: Via APIs that improve programmer actionability
▶ System Designers: To enable iterating over low-energy designs



Goal

Develop a framework to accurately and reliably measure the
energy consumption of the applications on Linux

Report the statistics to the
▶ End-users: In an easy-to-understand and useful format
▶ Programmers: Via APIs that improve programmer actionability

▶ System Designers: To enable iterating over low-energy designs



Goal

Develop a framework to accurately and reliably measure the
energy consumption of the applications on Linux

Report the statistics to the
▶ End-users: In an easy-to-understand and useful format
▶ Programmers: Via APIs that improve programmer actionability
▶ System Designers: To enable iterating over low-energy designs



Goal

▶ Framework = Models and Tools

▶ Power models = How we reason about and estimate a device’s
power draw over time

▶ Power models are often not available or poorly understood for
many devices, e.g., DRAM

▶ Tools can be built to accurately calculate power using the
models, e.g., nvidia-smi

▶ Takeaway: We need accurate models and reliable tools to
calculate energy consumption



Goal

▶ Framework = Models and Tools
▶ Power models = How we reason about and estimate a device’s

power draw over time

▶ Power models are often not available or poorly understood for
many devices, e.g., DRAM

▶ Tools can be built to accurately calculate power using the
models, e.g., nvidia-smi

▶ Takeaway: We need accurate models and reliable tools to
calculate energy consumption



Goal

▶ Framework = Models and Tools
▶ Power models = How we reason about and estimate a device’s

power draw over time
▶ Power models are often not available or poorly understood for

many devices, e.g., DRAM

▶ Tools can be built to accurately calculate power using the
models, e.g., nvidia-smi

▶ Takeaway: We need accurate models and reliable tools to
calculate energy consumption



Goal

▶ Framework = Models and Tools
▶ Power models = How we reason about and estimate a device’s

power draw over time
▶ Power models are often not available or poorly understood for

many devices, e.g., DRAM
▶ Tools can be built to accurately calculate power using the

models, e.g., nvidia-smi

▶ Takeaway: We need accurate models and reliable tools to
calculate energy consumption



Goal

▶ Framework = Models and Tools
▶ Power models = How we reason about and estimate a device’s

power draw over time
▶ Power models are often not available or poorly understood for

many devices, e.g., DRAM
▶ Tools can be built to accurately calculate power using the

models, e.g., nvidia-smi
▶ Takeaway: We need accurate models and reliable tools to

calculate energy consumption



Outline

Background

Problem

Goal

Current Tools
PowerTOP

System Design

End Product

Conclusion



PowerTOP



PowerTOP

It is possible to use Powertop to view the "power estimate" of a
process/device/interrupt/timer.

Challenges:

1. Power estimate is a discrete-time event. Energy consumption is a
continuous process with a higher correlation to battery drain.

2. Vendor-specific implementation
3. Actionability of this data for end-users and programmers

Process X consumes 1.45 Watts. What should the programmer do to optimize it?



PowerTOP

It is possible to use Powertop to view the "power estimate" of a
process/device/interrupt/timer.
Challenges:

1. Power estimate is a discrete-time event. Energy consumption is a
continuous process with a higher correlation to battery drain.

2. Vendor-specific implementation
3. Actionability of this data for end-users and programmers

Process X consumes 1.45 Watts. What should the programmer do to optimize it?



PowerTOP

It is possible to use Powertop to view the "power estimate" of a
process/device/interrupt/timer.
Challenges:

1. Power estimate is a discrete-time event. Energy consumption is a
continuous process with a higher correlation to battery drain.

2. Vendor-specific implementation

3. Actionability of this data for end-users and programmers
Process X consumes 1.45 Watts. What should the programmer do to optimize it?



PowerTOP

It is possible to use Powertop to view the "power estimate" of a
process/device/interrupt/timer.
Challenges:

1. Power estimate is a discrete-time event. Energy consumption is a
continuous process with a higher correlation to battery drain.

2. Vendor-specific implementation
3. Actionability of this data for end-users and programmers

Process X consumes 1.45 Watts. What should the programmer do to optimize it?



Outline

Background

Problem

Goal

Current Tools
PowerTOP

System Design

End Product

Conclusion



System Design

(One-time) 
Device-specific
Measurements

Kernel Process 
Accounting 

Infrastructure

Multi-variate 
Regression

Model

Per-process 
Energy 

Consumption



Device-Specific Measurements

Goal: Determine regression parameters

Algorithm:

1. Minimize system load by turning off all devices
2. Measure battery drain rate over multiple intervals
3. Turn on a single target device
4. Sweep target device parameters from low to high while measuring

battery drain
5. Turn off target device or set parameter to low
6. Repeat step 3-5 for all target devices



Device-Specific Measurements

Goal: Determine regression parameters
Algorithm:

1. Minimize system load by turning off all devices
2. Measure battery drain rate over multiple intervals
3. Turn on a single target device
4. Sweep target device parameters from low to high while measuring

battery drain
5. Turn off target device or set parameter to low
6. Repeat step 3-5 for all target devices



Device-Specific Measurements

Goal: Determine regression parameters
Algorithm:

1. Minimize system load by turning off all devices

2. Measure battery drain rate over multiple intervals
3. Turn on a single target device
4. Sweep target device parameters from low to high while measuring

battery drain
5. Turn off target device or set parameter to low
6. Repeat step 3-5 for all target devices



Device-Specific Measurements

Goal: Determine regression parameters
Algorithm:

1. Minimize system load by turning off all devices
2. Measure battery drain rate over multiple intervals

3. Turn on a single target device
4. Sweep target device parameters from low to high while measuring

battery drain
5. Turn off target device or set parameter to low
6. Repeat step 3-5 for all target devices



Device-Specific Measurements

Goal: Determine regression parameters
Algorithm:

1. Minimize system load by turning off all devices
2. Measure battery drain rate over multiple intervals
3. Turn on a single target device

4. Sweep target device parameters from low to high while measuring
battery drain

5. Turn off target device or set parameter to low
6. Repeat step 3-5 for all target devices



Device-Specific Measurements

Goal: Determine regression parameters
Algorithm:

1. Minimize system load by turning off all devices
2. Measure battery drain rate over multiple intervals
3. Turn on a single target device
4. Sweep target device parameters from low to high while measuring

battery drain

5. Turn off target device or set parameter to low
6. Repeat step 3-5 for all target devices



Device-Specific Measurements

Goal: Determine regression parameters
Algorithm:

1. Minimize system load by turning off all devices
2. Measure battery drain rate over multiple intervals
3. Turn on a single target device
4. Sweep target device parameters from low to high while measuring

battery drain
5. Turn off target device or set parameter to low

6. Repeat step 3-5 for all target devices



Device-Specific Measurements

Goal: Determine regression parameters
Algorithm:

1. Minimize system load by turning off all devices
2. Measure battery drain rate over multiple intervals
3. Turn on a single target device
4. Sweep target device parameters from low to high while measuring

battery drain
5. Turn off target device or set parameter to low
6. Repeat step 3-5 for all target devices



System Design

(One-time) 
Device-specific
Measurements

Kernel Process 
Accounting 

Infrastructure

Multi-variate 
Regression

Model

Per-process 
Energy 

Consumption



Kernel Process Accounting Infrastructure

Goal: Determine regression inputs

Method:

▶ Poll the process accounting infrastructure to determine CPU time
allocation, network activity, open file handles, memory, disk usage,
network, and screen wakeups.

▶ Input the measured values in the regression model to predict energy
consumption



Kernel Process Accounting Infrastructure

Goal: Determine regression inputs

Method:

▶ Poll the process accounting infrastructure to determine CPU time
allocation, network activity, open file handles, memory, disk usage,
network, and screen wakeups.

▶ Input the measured values in the regression model to predict energy
consumption



Kernel Process Accounting Infrastructure

Goal: Determine regression inputs

Method:
▶ Poll the process accounting infrastructure to determine CPU time

allocation, network activity, open file handles, memory, disk usage,
network, and screen wakeups.

▶ Input the measured values in the regression model to predict energy
consumption



Kernel Process Accounting Infrastructure

Goal: Determine regression inputs

Method:
▶ Poll the process accounting infrastructure to determine CPU time

allocation, network activity, open file handles, memory, disk usage,
network, and screen wakeups.

▶ Input the measured values in the regression model to predict energy
consumption



System Design

(One-time) 
Device-specific
Measurements

Kernel Process 
Accounting 

Infrastructure

Multi-variate 
Regression

Model

Per-process 
Energy 

Consumption



Challenge: System Design

▶ Estimated value (All models are wrong, but some are useful.)

▶ Accuracy and Bias trade-off: Accurate models generate larger
systemic load that biases observations



Challenge: System Design

▶ Estimated value (All models are wrong, but some are useful.)
▶ Accuracy and Bias trade-off: Accurate models generate larger

systemic load that biases observations



Challenge: Data Collection

▶ There are millions of devices, and billions of ICs inside these
devices. The power estimates can range across 2-3 orders of
magnitude. How can we develop accurate & reliable power
models across this diversity?

▶ Privacy concern: Should users share this data to a
"centralized" server?



Challenge: Data Collection

▶ There are millions of devices, and billions of ICs inside these
devices. The power estimates can range across 2-3 orders of
magnitude. How can we develop accurate & reliable power
models across this diversity?

▶ Privacy concern: Should users share this data to a
"centralized" server?



Challenge: Validation of Correctness

▶ There is often significant difference between estimated values
(from the model) and actual values (ground truth)

▶ How to identify regressions from ground truth without
hardware modifications?



Challenge: Validation of Correctness

▶ There is often significant difference between estimated values
(from the model) and actual values (ground truth)

▶ How to identify regressions from ground truth without
hardware modifications?



Carbon emissions of software

Carbon Footprint = Energy Consumption × Energy Composition

Energy Consumption = Power × Latency

Energy Composition depends on multiple factors, including
geography, time of availability, and cost



Carbon emissions of software

Carbon Footprint = Energy Consumption × Energy Composition

Energy Consumption = Power × Latency

Energy Composition depends on multiple factors, including
geography, time of availability, and cost



Carbon emissions of software

Carbon Footprint = Energy Consumption × Energy Composition

Energy Consumption = Power × Latency

Energy Composition depends on multiple factors, including
geography, time of availability, and cost



Outline

Background

Problem

Goal

Current Tools
PowerTOP

System Design

End Product

Conclusion



End-users



Programmers

Expose API for programmers: Indicate devices with high energy
consumption to allow backtracing to code

Example use-case: Energy-efficient code optimization suggestions
in the coding platform



System Designers

Expose API for system designers to enable better carbon
accounting practices with clear scope identification

Example use-case: Develop better tools to explore the design
space of performance vs energy vs carbon efficiency



Outline

Background

Problem

Goal

Current Tools
PowerTOP

System Design

End Product

Conclusion



Key Takeaways

▶ We cannot improve what we cannot measure.

▶ Non-CPU system components can dominate the
overall energy consumption.



Key Takeaways

▶ We cannot improve what we cannot measure.

▶ Non-CPU system components can dominate the
overall energy consumption.



Thank you!

Feedback/Collaboration ?
https://www.linkedin.com/in/adityamanglik/

amangli@student.ethz.ch

mailto:amangli@student.ethz.ch


Extended Discussion



Windows Energy Estimation Engine (E3) System
Design

Figure: Windows E3 System Design
Source: https://channel9.msdn.com/Events/WinHEC/2015/OWD203

https://channel9.msdn.com/Events/WinHEC/2015/OWD203


Reverse Engineering Windows’
Energy Estimation Engine: back-end

▶ The Energy Estimation Engine (E3) service runs on all Windows
devices and attributes energy consumption to individual hardware
components and applications.

▶ Why software-based attribution: Few PCs in the market have
such dedicated chips: According to reports, 99% of current
devices in market lack dedicated current and voltage monitors.

▶ Software-based power attribution provides about 85% accuracy
compared to a 98% accuracy rate from systems equipped with
dedicated current and voltage monitors (e.g., Microsoft Surface)

▶ Microsoft claims that they prioritize data from devices with
dedicated chips while developing the software-based power
models.



Reverse Engineering Windows’
Energy Estimation Engine: back-end

▶ The Energy Estimation Engine (E3) service runs on all Windows
devices and attributes energy consumption to individual hardware
components and applications.

▶ Why software-based attribution: Few PCs in the market have
such dedicated chips: According to reports, 99% of current
devices in market lack dedicated current and voltage monitors.

▶ Software-based power attribution provides about 85% accuracy
compared to a 98% accuracy rate from systems equipped with
dedicated current and voltage monitors (e.g., Microsoft Surface)

▶ Microsoft claims that they prioritize data from devices with
dedicated chips while developing the software-based power
models.



Reverse Engineering Windows’
Energy Estimation Engine: back-end

▶ The Energy Estimation Engine (E3) service runs on all Windows
devices and attributes energy consumption to individual hardware
components and applications.

▶ Why software-based attribution: Few PCs in the market have
such dedicated chips: According to reports, 99% of current
devices in market lack dedicated current and voltage monitors.

▶ Software-based power attribution provides about 85% accuracy
compared to a 98% accuracy rate from systems equipped with
dedicated current and voltage monitors (e.g., Microsoft Surface)

▶ Microsoft claims that they prioritize data from devices with
dedicated chips while developing the software-based power
models.



E3 System Design
▶ Power profiles: Windows has separate power profiles for individual

hardware devices like network, disks etc. Further, profiles
specialize for Laptops, Tablets, Phones devices etc.

▶ The following data columns can be observed in the E3 Service
Report (shown below): ScreenOnEnergy, CPUEnergy, SoCEnergy,
DisplayEnergy, DiskEnergy, MBBEnergy, NetworkEnergy,
EmiEnergy, and many more.

Figure: Data dump from E3 CLI



System design goals

The framework should be:
Accurate: Eliminate anomalous values

Portable: Able to function across different hardware vendors2

Independent of extra measurement devices
Transparent: Should not induce any load on the target system1

Reliable: Repeat experiments should yield similar results

1Stretch goal



System design goals

The framework should be:
Accurate: Eliminate anomalous values
Portable: Able to function across different hardware vendors2

Independent of extra measurement devices
Transparent: Should not induce any load on the target system1

Reliable: Repeat experiments should yield similar results

1Stretch goal



System design goals

The framework should be:
Accurate: Eliminate anomalous values
Portable: Able to function across different hardware vendors2

Independent of extra measurement devices

Transparent: Should not induce any load on the target system1

Reliable: Repeat experiments should yield similar results

1Stretch goal



System design goals

The framework should be:
Accurate: Eliminate anomalous values
Portable: Able to function across different hardware vendors2

Independent of extra measurement devices
Transparent: Should not induce any load on the target system1

Reliable: Repeat experiments should yield similar results

1Stretch goal



System design goals

The framework should be:
Accurate: Eliminate anomalous values
Portable: Able to function across different hardware vendors2

Independent of extra measurement devices
Transparent: Should not induce any load on the target system1

Reliable: Repeat experiments should yield similar results

1Stretch goal



Design Optimizations
Central information store to overcome randomness?

▶ Overcoming variation in values: Collect data across systems to
create a database

▶ Privacy challenges: can we do better?



Design Optimizations
Central information store to overcome randomness?

▶ Overcoming variation in values: Collect data across systems to
create a database

▶ Privacy challenges: can we do better?



Design Considerations

▶ Reliable: Co-executing processes significantly influence power.
Solution: Energy consumption should be roughly similar.

▶ Accuracy:

▶ Challenging to isolate individual contributions as many processes use
multiple hardware devices simultaneously (CPU, GPU, Display, RAM,
SSD, Ethernet/WiFi).

▶ Hardware devices do not measure/expose individual power draw.
▶ Significant variation in data-sheets across devices and vendors.
▶ Reliable values: CPU perf counters (RAPL?) and current battery

charge (ACPI?)



Design Considerations

▶ Reliable: Co-executing processes significantly influence power.
Solution: Energy consumption should be roughly similar.

▶ Accuracy:
▶ Challenging to isolate individual contributions as many processes use

multiple hardware devices simultaneously (CPU, GPU, Display, RAM,
SSD, Ethernet/WiFi).

▶ Hardware devices do not measure/expose individual power draw.
▶ Significant variation in data-sheets across devices and vendors.
▶ Reliable values: CPU perf counters (RAPL?) and current battery

charge (ACPI?)



Design Considerations

▶ Reliable: Co-executing processes significantly influence power.
Solution: Energy consumption should be roughly similar.

▶ Accuracy:
▶ Challenging to isolate individual contributions as many processes use

multiple hardware devices simultaneously (CPU, GPU, Display, RAM,
SSD, Ethernet/WiFi).

▶ Hardware devices do not measure/expose individual power draw.

▶ Significant variation in data-sheets across devices and vendors.
▶ Reliable values: CPU perf counters (RAPL?) and current battery

charge (ACPI?)



Design Considerations

▶ Reliable: Co-executing processes significantly influence power.
Solution: Energy consumption should be roughly similar.

▶ Accuracy:
▶ Challenging to isolate individual contributions as many processes use

multiple hardware devices simultaneously (CPU, GPU, Display, RAM,
SSD, Ethernet/WiFi).

▶ Hardware devices do not measure/expose individual power draw.
▶ Significant variation in data-sheets across devices and vendors.

▶ Reliable values: CPU perf counters (RAPL?) and current battery
charge (ACPI?)



Design Considerations

▶ Reliable: Co-executing processes significantly influence power.
Solution: Energy consumption should be roughly similar.

▶ Accuracy:
▶ Challenging to isolate individual contributions as many processes use

multiple hardware devices simultaneously (CPU, GPU, Display, RAM,
SSD, Ethernet/WiFi).

▶ Hardware devices do not measure/expose individual power draw.
▶ Significant variation in data-sheets across devices and vendors.
▶ Reliable values: CPU perf counters (RAPL?) and current battery

charge (ACPI?)



Different hardware devices

▶ CPU: Dominant factor, P-states vs C-states, interfaces (Intel
RAPL)

▶ GPU: periodic bursts of large power draw
▶ RAM: Increasing DRAM capacity is challenging due to refresh

power draw (Reference)
▶ I/O Peripherals: USB devices are polled every 5 ms
▶ Display: Often the most consistent drain
▶ Network Adaptors: Ethernet, WiFi ping frequency
▶ Disk: SSD, HDD writes are cached for bulk ops

https://appleinsider.com/articles/16/10/29/apple-limits-2016-macbook-pro-models-to-16gb-of-ram-to-maximize-battery-life


Design Considerations

▶ Hardware requirements: Cannot rely on external power monitors
▶ Transparency: Polling for values induces load on the target system
▶ Able to function across different hardware vendor APIs
▶ Actionability of data: Reporting hardware power values is "futile"

because hardware is difficult to change, but processes might be
optimized.


	Background
	Problem
	Goal
	Current Tools
	PowerTOP

	System Design
	End Product
	Conclusion
	Backup slides

