FORMJ

Effortless Bug Hunting with Differential Fuzzing

FORMJ

$ whoami

e "™ Maciej Mionskowski
o Offensive Security Engineer @ Form3
e prev. Platform Engineer, Software Engineer

e - Sailing, & Climbing, € Board Games

FORMJ

What we'll talk about

e Fuzzing

e Differential Fuzzing

e Bugs in the standard library

e Contributing to the standard library

e Fuzzing in CI pipelines

FORMJ

What we'll not talk about

e How fuzzing works under the hood.

FORMJ

Why should you care?

FORMJ

Fuzzing is very effective!

As of August 2023, OSS-Fuzz has helped identify and fix over 10,000
vulnerabilities and 36,000 bugs across 1,000 projects.

https://google.github.io/oss-fuzz/#trophies

https://google.github.io/oss-fuzz/#trophies

func
a ->
b ->
c ->

Rot13(1in string) string

O S5

FORMJ

: FORM
Regular testing

@2 —%

devised input function under test check assertions

FORMJ

Regular testing

func TestRotl1l3(t *testing.T) {
1f Rot13("The quick brown fox") != "Gur dhvpx oebja sbk" {
t.Fail()
b

go test -run=TestRotl3

: FORM
Fuzzing

3 —— L] —— :

random input function under test check assertions

FORMJ

Fuzzing

func FuzzRotl1l3(f *testing.F) {
f.Add("The quick brown fox")

f.Fuzz(func(t *testing.T, in string) {

if Rot13(in) != 272272272272
t.Fail()
}

1)
}

go test -fuzz=FuzzRot13 .

go test -fuzz=FuzzRot13 -run="$

fuzz:
fuzz:
fuzz:
fuzz:

elapsed:
elapsed:
elapsed:
elapsed:

0s,
Os,

1s,
25,

gathering baseline coverage:
gathering baseline coverage:
execs:
execs:

201040 (297903/sec),
401040 (268204/sec),

> 200 000 1inputs/sec

FORMJ

0/11 completed
11/11 completed
new interesting: 139 (total: 150)
new interesting: 130 (total: 250)

FORMJ

It's easy to create fuzz tests

if you have unit tests in place!

FORMJ

The input/The corpus

func FuzzRotl1l3(f *testing.F) {
f.Add("The quick brown fox")

FORMJ

Add inputs from unit tests to the corpus

: FORM
Fuzzing (commonly)

—>—>

randomize function under test check If crashed
iInput

FORMJ

Fuzzing (commonly)

func FuzzRotl13(f *testing.F) {
f.Fuzz(func(t *testing.T, 1in string) {

Rot13(1n)

1)

FORMJ

You can (should) assert on invariants

Rot13(Rotl3(z)) = =
FHf) =

FORMJ

Fuzzing (with an inversible function)

func FuzzRotl13(f *testing.F) {
f.Fuzz(func(t *testing.T, 1in string) {

1f Rotl3(Rot13(1in)) != 1in {
t.Fail()
h

1)

FORMJ

Inversible examples

Encode() /Decode()

Marshal() /Unmarshal()

FORMJ

Other examples

len(SHA256(x)) == 32

FORMJ

Other examples

func FuzzRotl13(f *testing.F) {
f.Fuzz(func(t *testing.T, 1in string) {

1f Rot13(in) != otherimpl.Rot13(1in) {
t.Fail()
h

1)

FORM
Differential Fuzzmg

random input

implementation 1 implementation 2

check for disagreement

FORMJ

2nd implementation?

FORMJ

Refactoring

If you're refactoring code.
You can keep your old implementation to verify the refactored one.

FORMJ

Performance

You're might be maintaining two implementations where:

e The 1stis written close to some spec, but might be inefficient

e 2nd one is fast, but the code is heavily optimized and unclear

FORMJ

There's a C library that does a similar thing

And you can use CGO to call it.

FORMJ

Case Study

x/net/html. Tokenizer

FORMJ

What does a HTML tokenizer do?

<p>text</p><a>

=>

StartTag - p
Text - text
EndTag - p
StartTag - a

FORMJ

How and where is it defined?

https://html.spec.whatwg.org/multipage/parsing.html#tokenization

e Well defined, high in detail
e It's a state machine

https://html.spec.whatwg.org/multipage/parsing.html#tokenization

FORMJ

How is it implemented in Go?

https://github.com/golang/net/blob/master/html/token.go

e It's not a state machine

e Not quite easy to understand

https://github.com/golang/net/blob/master/html/token.go

FORMJ

func Tokenize(input string) (tokens []Token) {

tok := html.NewTokenizer(input)
for {
tt := tok.Next()
/] ...
tokens = append(tokens, tt.Token())
/] ...
h
return

FORMJ

Fuzzing x/net/htmi

func FuzzTokenize(f *testing.F) {
f.Add("<p>text</p><a>")
f.Add("<!-- command --><body><script>alert(1)</script>")

f.Fuzz(func(t *testing.T, input string) {
Tokenize(input)

1)

FORMJ

No results

It doesn't crash.

FORMJ

Differential fuzzing x/net/htmi

func FuzzTokenize(f *testing.F) {
f.Fuzz(func(t *testing.T, input string) {
netTokens := Tokenize(input)
altImplTokens := altimpl.Tokenize(input)

1f netTokens != altImplTokens {
t.Fail()
return

1)

FORMJ

There's C library for that

Lexbor

We build a web browser engine available as a software library; it ships under
the Apache 2.0 license and has no extra dependencies.

https://github.com/lexbor/lexbor

https://github.com/lexbor/lexbor

FORMJ

func LexborTokenize(data string) []Token {
input := unsafe.Pointer(C.CString(data))
inputSize := C.ulong(len(data))
defer C.free(unsafe.Pointer(input))

tkz := C.1lxb_html_tokenizer_create()
defer C.1lxb_html_tokenizer_destroy(tkz)

status := C.1lxb_html_tokenizer_init(tkz)

C.register_token_callback(tkz)

status = C.1lxb_html_tokenizer_begin(tkz)
status = C.1lxb_html_tokenizer_chunk(tkz, (*C.uchar)(input), i1nputSize)
status = C.1lxb_html_tokenizer_end(tkz)

return tokenizerTokens[tkzPtr]

https://github.com/maciekmm/go-std-lib-fuzz/blob/master/lexbor.go

https://github.com/maciekmm/go-std-lib-fuzz/blob/master/lexbor.go

FORMJ

Differential fuzzing x/net/htmi

func FuzzTokenize(f *testing.F) {
f.Fuzz(func(t *testing.T, 1input string) {
netTokens = Tokenize(input)
lexborTokens := LexborTokenize(input)

1f lreflect.DeepEqual(netTokens, lexborTokens) {
t.Fail()
return

1)

FORMJ

It found something!

go test -fuzz=FuzzTokenize -run=A$
fuzz: elapsed: 0s, gathering baseline coverage: 0/11 completed
fuzz: elapsed: 0s, gathering baseline coverage: 11/11 completed, now fuzzing with 20 workers
fuzz: elapsed: 1s, execs: 201040 (297903/sec), new interesting: 139 (total: 150)
--- FAIL: FuzzTokenize (0.68s)
--- FAIL: FuzzTokenize (0.00s)
lexbor_test.go:65: length mismatch:

lexbor =[{Name:a Type:StartTag}],

net =[]

not equal, input: <A =">

FORMJ

The finding

lexbor = [{Name:a Type:StartTag}],
net =[]
not equal, 1nput: <A =">

FORMJ

How do browsers interpret this?
<a ="">test
=>

<script =">alert(1l)</script>

FORMJ

FORMJ

Could this be a security issue?

FORMS
What if you made trust decisions based on the tokenizer?

func IsSafe(content io.Reader) bool {
tok := html.NewTokenizer(content)
for {
tt := tok.Next()
switch tt {
case html.StartTagToken:
name, hasAttr := tok.TagName()
if hasAttr || string(name) != "strong" {
return false
}

case html.ErrorToken:
if tok.Err() == 10.EOF {
return true
}

return false
case html.TextToken, html.EndTagToken:
default:
return false
b
¥

return true

FORMJ

What if you made trust decisions based on the tokenizer?

case html.StartTagToken:
name, hasAttr := tok.TagName()
1f hasAttr || string(name) !'= "strong" {
return false
J

case html.TextToken, html.EndTagToken:
// text 1s allowed

default:
return false

FORMJ

What if you made trust decisions based on the tokenizer?

IsSafe(<script =">alert(1l)</script>) == true

FORMJ

What if you me trust decisions based on the tokenizer?

Security Considerations

Care should be taken [...] especially with regard to untrusted inputs.

[...]

If your use case requires semantically well-formed HTML, [...] the parser
should be used rather than the tokenizer.

pkg.go.dev/golang.org/x/...

https://pkg.go.dev/golang.org/x/net@v0.9.0/html#hdr-Security_Considerations

FORMJ
The parser has the same problem

func IsSafe(content io.Reader) bool {

parsed, err := html.ParseFragment(content, nil)
if err !'= nil {
return false
3
for _, el := range parsed {
if !isNodeSafe(el) {
return false
3
3
return true
3
func isNodeSafe(node *html.Node) bool {

if node == nil {
return true
}

if len(node.Attr) != 0 {
return false
}

if node.Type == html.ElementNode {
// Parse and ParseFragment will inject html, head, and body.
// We'll allow these tags for the sake of simplicity, you'd normally want to filter them out.
if node.Data != "strong" && node.Data != "html" && node.Data != "head" && node.Data != "body" {
return false
b
b

return isNodeSafe(node.NextSibling) && isNodeSafe(node.FirstChild)

FORMJ

The parser has the same problem

IsSafe(<script =">alert(1l)</script>") == true

FORMJ
The parser has the same problem

FORMJ

1. The documentation could be improved

2. There's a bug in the tokenizer

oy FORMJ
Google Vulnerability Report Program

Summary: XS5 in x/net/html Tokenizer due to tokenizing inconsistency between http. Tokenizer and browsers
Product: Golang
URL: https://cs.opensource.google/go/%/net/+/master:html/token.go

Vulnerability type: Cross-site scripting (X55)
Details

There's parsing inconsistency between x/net/html.Tokenizer and web browsers leading to potential XSS injection attack.

Consider the following input: <script>alert(window.location.href)</script>. When ran through html.Tokenizer one will get html.5tartTagToken with a
Token.Data equalto script followed by EOF ErrorToken This is a correct and expected behavior.

Consider a very similar input: <script =">alert(window.location.href)</script>. This time around the html.Tokenizer only shows the EOF

ErrorToken, while browser parses this to <script ="="">alert(window.location.href)</script> potentially leading to script injection and execution.

“w/net/html" version: v0.7.0
Attack scenario

Consider a website with a comment system where certain HTML tags are allowed. For the purpose of this report let's say h1l are safe and allowed. To make sure that
comments only have hl tags one will use the x/net/html.Tokenizerand listen for html.StartTagToken or html.S5elfClosingTagTokens.

Due to this vulnerability an attacker can smuggle a <script> tag and execute arbitrary javascript on the website leading to XSS and potential data exfiltration from the
website.

Please see attached file for a PoC. go run main.go and navigate to http://localhost: 8822 in your browser

FORMJ

Google Vulnerability Report Program

I\"I

Maciej “maciekmm” Mionskowski <maciekmm.wiad@gmail.com= #6 Mar 22, 2023 11:06PM

Thank you for the reply.
| only partially agree with the explanation provided.

&> The documentation for the html package states that it implements a html5-compliant Tokenizer and Parser. The tokenization/parsing specification is clearly
defined behind https://html.spec.whatwg.org/multipage/parsing.html so any discrepancy between the implementation of html.Tokenizer/Parser and the
specification should be fixed. The current implementation viclates the state defined in https://html.spec.whatwg.org/multipage/parsing_html#before-attribute-
name-state and more specifically how EQUALS SIGN (=) is handled.

Moreover, the same holds true for the Parser. As the Parser uses the Tokenizer that this issue was filed against, the input is parsed incorrectly (the script tag is not
visible in the tree). The security considerations may suggest that just using the Parser without Rendering the result back may be enough to avoid this class of
issues. The Parser is also unwieldy to use for this kind of purpose as it will return full html document with body and html tags, which are undesired and not
reflective of what the user has provided.

Recently introduced Security Considerations seem to contradict the compliance of the parser/tokenizer and only shift the responsibility to consumers of the library
rather than fixing the underlying issues.

As you've mentioned, there are multiple libraries using the Tokenizer to sanitize inputs. One of the biggest one being https://github.com/microcosm-
cc/bluemonday that is widely used.

| believe it's paramount that the parser/tokenizer remains compliant with the specification. Any slippage in this regard may result in unforeseen security issues.
In light of these considerations, | think the issues raised in the report should be reconsidered.

Thank you again for your reply and for your commitment to the development of the library.

FORMJ

The documentation update

In security contexts, if trust decisions are being made using the tokenized or
parsed content, the input must be re-serialized (for instance by using Render or
Token.String) in order for those trust decisions to hold, as the process of
tokenization or parsing may alter the content.

+ + + +

FORMJ

the input must be re-serialized (for instance
by using Render or Token.String)

FORMJ

A few months pass

FORMJ

Maintainers fix the bug
html: handle equals sign before attribute

Apply the correct normalization when an equals sign appears
before an attribute name (e.g. ‘<tag =>' -> ‘<tag =="">'), per
WHATWG 13.2.5.32.

https://github.com/golang/net/commit/4050002696905e240612ce01211f8ff46cc3
S5afa

https://github.com/golang/net/commit/4050002696905e240612ce01211f8ff46cc35afa
https://github.com/golang/net/commit/4050002696905e240612ce01211f8ff46cc35afa

FORMJ

Maintainers fix the bug

IsSafe(<script =">alert(1l)</script>") == false

FORMJ

Let's run the fuzz test again

$ go test -fuzz=FuzzTokenize -run=/$
fuzz: elapsed: 0s, gathering baseline coverage: 0/434 completed
fuzz: elapsed: O0s, gathering baseline coverage: 434/434 completed, now fuzzing with 20 workers
fuzz: minimizing 37-byte failing input file
fuzz: elapsed: 0s, minimizing
--- FAIL: FuzzTokenize (0.30s)
--- FAIL: FuzzTokenize (0.00s)
lexbor_test.go:65: length mismatch:

lexbor =[{Name:a Type:StartTag}],

net =[]

not equal, input: <A/=">

FORMJ

Let's run the fuzz test again

Lexbor =[{Name:a Type:StartTag}],
net =[]
not equal, 1nput: <A/=">

FORMJ

I decided to learn the codebase myself

case ' ', '\n', '\r', '"\t', '\f', '/':
z.pendingAttr[0].end = z.raw.end - 1

return
case '='":
if z.pendingAttr[0].start+1l == z.raw.end {
// WHATWG 13.2.5.32, if we see an equals sign before the attribute name
// begins, we treat it as a character in the attribute name and continue.
continue
¥
fallthrough
- case '>':
+ case 1 |’ I\nll l\rI’ '\t', '\f', I/II I>1.
+ // WHATWG 13.2.5.33 Attribute name state
+ // We need to reconsume the char in the after attribute name state to support the / character

https://go-review.googlesource.com/c/net/+/533518#message-
73a79f71c04dc5c1fb75b37f218314bf803cbeaf

https://go-review.googlesource.com/c/net/+/533518#message-73a79f71c04dc5c1fb75b37f218314bf803cbeaf
https://go-review.googlesource.com/c/net/+/533518#message-73a79f71c04dc5c1fb75b37f218314bf803cbeaf

FORMJ

No more findings :)

FORMJ

Fuzzing is effective

FORMJ

Differential fuzzing helps you write correct code

FORMJ

Good testing candidates

e parsers
e encoders/decoders
e marshallers/unmarshallers

e complex code in general that can be unit tested

FORMJ

Running fuzz tests in CI

Is problematic

FORMJ

go test -fuzz invocation can only run one Fuzz target at
a time

FORMJ

ClusterFuzzLite inadequately supports native Go fuzz
tests

e problems with understanding/extracting failing inputs

e inconvenient to run locally

FORMJ

We built go-ci-fuzz

CLI and set of GitHub Actions to help you run Native Go Fuzz Tests in CI.
It's a light wrapper around go test -fuzz= supporting multiple test targets.

https://github.com/form3tech-oss/go-ci-fuzz

https://github.com/form3tech-oss/go-ci-fuzz

. . FORMS
Drag & Drop GitHub action

name: Go CI Fuzz - Scheduled

on:

workflow_dispatch: {}
schedule:

- cron: '@ 2 * * *!
permissions:

contents: read

jobs:
Fuzz:
runs-on: ubuntu-20.04
steps:
- uses: actions/checkout@b4ffde65f46336ab88eb53be808477a3936baell # v4.1.1
- uses: actions/setup-go@93397beall091df50f3d7e59dc26a7711a8bcfbe # v4.1.0
with:
go-version: stable
- name: Run fuzzers

id: build
uses: form3tech-oss/go-ci-fuzz/ci/github-actions/fuzz@v0.1.1
with:

fuzz-time: 30m
fail-fast: false

FORMJ

Let's connect

e https://mionskowski.pl
e hello@mionskowski.pl

e @maciekmm:attendees.fosdem.org

https://mionskowski.pl/
mailto:hello@mionskowski.pl

FORMJ

References

e https://go.dev/doc/tutorial/fuzz

e https://github.com/google/oss-fuzz-gen

e https://en.wikipedia.org/wiki/Fuzzing

e https://google.github.io/clusterfuzzlite/

e https://github.com/form3tech-oss/go-ci-fuzz

e https://mionskowski.pl/posts/unmasking-go-html-parser-bug/

https://go.dev/doc/tutorial/fuzz
https://github.com/google/oss-fuzz-gen
https://en.wikipedia.org/wiki/Fuzzing
https://google.github.io/clusterfuzzlite/
https://github.com/form3tech-oss/go-ci-fuzz
https://mionskowski.pl/posts/unmasking-go-html-parser-bug/

