
Automating Spark (and
Pipeline) Upgrades

 While "Testing" in Production

Who am I?

● My name is Holden Karau
● Pronouns are she/her
● Apache Spark PMC (think committer with tenure)
● previously Apple, IBM, Alpine, Databricks, Google, Foursquare & Amazon
● My employer is hiring (Netflix)
● co-author of High Performance Spark, Learning Spark, and Kubeflow for

Machine Learning, Scaling Python With {Ray, Dask}
● Twitter: @holdenkarau, bluesky holdenkarau.com, mastodon

@holden@tech.lgbt
● OOS Livestreams: https://youtube.com/user/holdenkarau
● Github https://github.com/holdenk
● Dog mom

https://twitter.com/holdenkarau
https://youtube.com/user/holdenkarau
https://github.com/holdenk

Our Problems

● We have unsupported versions of our data tools in production
● When things go wrong, I don't remember what we did ~5 months ago let

alone ~5 years ago
● They often seam to go wrong when I'm trying to focus or sleep
● Spark 2 is very much EOLd, Spark 4 is coming soon

Why do we have these problems?

● Keeping code up to date is not a lot of fun
● Backporting is not fun
● Most humans prefer to do fun things (candy over say taxes)
● A lot of data pipelines are not very well tested
● Software is not "built to last" as they say (planned EOL etc.)
● Some of our data pipelines can have real world impacts when they go wrong

How can we work around our problem?

Software:

● Automated Code Update Tools
○ (AST transforms, or regexes both are fine)

● Generated Tests
● Automated Testing and Validation

Social:

● Increase visibility of out of date code & change incentives

Ok social first:

● People are way harder than computers
● We gave a deadline (and slipped) like a "normal" project
● Created visibility
● Found org champions

I have a problem, let's fix it with computers

● "I played a role in helping ... become the deprecation-happy prima donnas
that they are today, when I built Grok, which is a source-code understanding
engine that facilitates automation and tooling on source code itself"
https://medium.com/@steve.yegge/dear-google-cloud-your-deprecation-policy
-is-killing-you-ee7525dc05dc

● Oh hey that sounds familiar
● Wait "killing you" -- that doesn't sound good -- w/e

https://medium.com/@steve.yegge/dear-google-cloud-your-deprecation-policy-is-killing-you-ee7525dc05dc
https://medium.com/@steve.yegge/dear-google-cloud-your-deprecation-policy-is-killing-you-ee7525dc05dc

Code Update Tools

● Generally not regular expressions. Buuuut….
● Scala: ScalaFix
● Python: PySparkler
● SQL: SQLFluff
● Java: (skipped, we didn't have that many)

How do you figure out the rules to make?

● Release notes (incomplete)
● MIMA changes (soooo many)
● Try and see what's broken :p (aka YOLO)

What do some rules look like?

● Let's just look at Scala & SQL

What do they look like [Scala]

override def fix(implicit doc: SemanticDocument): Patch = {

 val readerMatcher =

SymbolMatcher.normalized("org.apache.spark.sql.DataFrameReader")

 val jsonReaderMatcher =

SymbolMatcher.normalized("org.apache.spark.sql.DataFrameReader.json")

 val utils = new Utils()

 def matchOnTree(e: Tree): Patch = {

 e match {

 case ns @ Term.Apply(jsonReaderMatcher(reader), List(param)) =>

What do they look like [Scala] (continued)

 param match {

 case utils.rddMatcher(rdd) =>

 (Patch.addLeft(rdd, "session.createDataset(") +

Patch.addRight(rdd, ")(Encoders.STRING)") +

utils.addImportIfNotPresent(importer"org.apache.spark.sql.Encoders"))

 case _ =>

 Patch.empty

 }

What do they look like [Scala] (continued)

 case elem @ _ =>

 elem.children match {

 case Nil => Patch.empty

 case _ => elem.children.map(matchOnTree).asPatch

 }

 }

 }

 matchOnTree(doc.tree)

 }

SQL rules: It's like an AST transform but…. eh
 def _eval(self, context: RuleContext) -> Optional[LintResult]:

 functional_context = FunctionalContext(context)

 children = functional_context.segment.children()

 function_name_id_seg = (

 children.first(sp.is_type("function_name"))

 .children()

 .first(sp.is_type("function_name_identifier"))[0]

)

SQL rules: It's like an AST transform but…. eh
 raw_function_name = function_name_id_seg.raw.upper().strip()

 function_name = raw_function_name.upper().strip()

 bracketed_segments = children.first(sp.is_type("bracketed"))

 if function_name == "APPROX_PERCENTILE" or function_name == "PERCENTILE_APPROX":

 expression_count = 0

 expression_segment = None

 # Find "middle" of the approx_percentile(bloop) (e.g. bloop)

 for segment in bracketed_segments.children().iterate_segments(

 sp.is_type("expression")

):

SQL rules: It's like an AST transform but…. eh
 expression_count += 1

 if expression_count == 3:

 expression_segment = segment

 if expression_segment is not None:

 expression_child = expression_segment.children().first()

 # cast can either be a keyword or a function depending on if were iterating on

 # parsed on updated code.

 if expression_child[0].type == "keyword":

 if expression_child.child[0].raw == "cast":

 return None

SQL rules: It's like an AST transform but…. eh
 elif expression_child[0].type == "function":

 function_name_id_seg = (

 expression_child.children()

 .first(sp.is_type("function_name"))

 .children()

 .first(sp.is_type("function_name_identifier"))[0]

)

SQL rules: It's like an AST transform but…. eh
 raw_function_name = function_name_id_seg.raw.upper().strip()

 function_name = raw_function_name.upper().strip()

 # If we see a cast then we know this was already fixed.

 if function_name == "CAST":

 return None

 expression_child = expression_child[0]

SQL rules: It's like an AST transform but…. eh
 edits = [

 KeywordSegment("cast"),

 SymbolSegment("(", type="start_bracket"),

 expression_child,

 WhitespaceSegment(),

 KeywordSegment("as"),

 WhitespaceSegment(),

 KeywordSegment("int"),

 SymbolSegment(")", type="end_bracket"),

]

How do we know if it worked?

● Hope is not a plan
● Tests? (See https://github.com/holdenk/spark-testing-base)
● lakeFS or Iceberg + side by side runs

https://github.com/holdenk/spark-upgrade/tree/main/pipelinecompare
○ An extension of the WAP pattern – see Michelle Winters from Netflix in her talk "Whoops the

Numbers are Wrong."
○ We tried to do opt-out but ended up having to do opt-in tagging
○ Added some extensions to pick up changed partitions and not validate "too large" jobs

● Validation queries
○ SodaCL
○ https://datatest.readthedocs.io/en/latest/intro/pipeline-validation.html
○ spark-expectations

https://github.com/holdenk/spark-testing-base
https://github.com/holdenk/spark-upgrade/tree/main/pipelinecompare
https://www.youtube.com/watch?v=fXHdeBnpXrg
https://www.youtube.com/watch?v=fXHdeBnpXrg
https://github.com/sodadata/soda-core
https://datatest.readthedocs.io/en/latest/intro/pipeline-validation.html
https://engineering.nike.com/spark-expectations/latest/

Is that expensive? Does it catch everything?

● Yes
○ Beyond doubling the cost for shadow jobs comparisons themselves took substantial compute

resources.
● No

○ Jobs with side effects
○ Non-deterministic jobs
○ etc.

DEMO TIME

Let's hope it does not crash. Yay!

Ok, but where doesn't this work well?

● Dependencies
○ In my super informal survey of folks the #1 reason blocking upgrade was ElasticSearch

connector
● Programming language version change

○ The reality is there's a lot of Scala 2.11 code out there, our resources are focused on
2.12->2.13 migration's but folks are further back

○ Scala version change was the #2 reason blocking Spark upgrades for folks
● API changes (what this "solves") came in #3

In conclusion:

● If you want to upgrade Spark and are lazy –
https://github.com/holdenk/spark-upgrade

● The good news is we haven't made a system so powerful we can change
APIs without caring

● The bad news is the same
● The excellent news is: my dog is cute AF

https://github.com/holdenk/spark-upgrade

