Automating Spark (and
Pipeline) Upgrades

While "Testing" in Production

Who am |?

My name is Holden Karau

Pronouns are she/her

Apache Spark PMC (think committer with tenure)
previously Apple, IBM, Alpine, Databricks, Google, Foursquare & Amazon
My employer is hiring (Netflix)

co-author of High Performance Spark, Learning Spark, and Kubeflow for
Machine Learning, Scaling Python With {Ray, Dask}

Twitter: @holdenkarau, bluesky holdenkarau.com, mastodon
@holden@tech.lgbt

OOS Livestreams: https://youtube.com/user/holdenkarau
Github https://github.com/holdenk

Dog mom

https://twitter.com/holdenkarau
https://youtube.com/user/holdenkarau
https://github.com/holdenk

Our Problems

e We have unsupported versions of our data tools in production

e \When things go wrong, | don't remember what we did ~5 months ago let
alone ~5 years ago

e They often seam to go wrong when I'm trying to focus or sleep

e Spark 2 is very much EOLd, Spark 4 is coming soon

Why do we have these problems?

Keeping code up to date is not a lot of fun

Backporting is not fun

Most humans prefer to do fun things (candy over say taxes)
A lot of data pipelines are not very well tested

Software is not "built to last" as they say (planned EOL etc.)
Some of our data pipelines can have real world impacts when they go wrong

How can we work around our problem?

Software:

e Automated Code Update Tools

o (AST transforms, or regexes both are fine)
e (Generated Tests

e Automated Testing and Validation
Social:

e Increase visibility of out of date code & change incentives

Ok social first:

People are way harder than computers

We gave a deadline (and slipped) like a "normal" project
Created visibility

Found org champions

g SparkSQL Workflows Stash Tracking Tab ~ Non-SparkSQL workflows stash trackingtab ~ Spark on Titus Migration Tracking ~ New Spark 2.x workflows ~ Spark 2.x Dagobah Nodes ~ Spark 2.x Jars References and Changelog ~ [DEPRECATED] Migration Progress Tab [DEPRECATED] NotebookJob Workflows [DEPRECATED] Cass

Total Workflows 6 : Completed Workflows e : Percent Complete

Spark Migration
Newsletter

| have a problem, let's fix it with computers

e "| played a role in helping ... become the deprecation-happy prima donnas
that they are today, when | built Grok, which is a source-code understanding
engine that facilitates automation and tooling on source code itself"
https://medium.com/@steve.yegge/dear-google-cloud-your-deprecation-policy
-is-killing-you-ee7525dc05dc

e Oh hey that sounds familiar

e \Wait "killing you" -- that doesn't sound good -- w/e

https://medium.com/@steve.yegge/dear-google-cloud-your-deprecation-policy-is-killing-you-ee7525dc05dc
https://medium.com/@steve.yegge/dear-google-cloud-your-deprecation-policy-is-killing-you-ee7525dc05dc

Code Update Tools

Generally not regular expressions. Buuuut....
Scala: ScalaFix

Python: PySparkler

SQL: SQLFIuff

Java: (skipped, we didn't have that many)

How do you figure out the rules to make?

e Release notes (incomplete)
e MIMA changes (soooo many
e Try and see what's broken :p (aka YOLO

PLL R L L L

Becaume
he application and
ot that in praciice
naintained
ingase BOW 10 implemment the operstions of w el
HEAP-MAXIMUM Implements the MAXIMUM operatic o

HEAp.

MaXimumcay
[

Al

The p,
tion, 1y ;.

S eaure HEAP-Exrwi SRR
S Similar 1o the for. loop body (1
ACT-Max (4)

ize[A] < |

'S eITor “heap underfiow
max — Ay

HEAP-Exg
if heap.,

“ Alheap-s

heap-size| A} <
AX-HEAPIRy (

return max

1A)}
heap-size{ A) — 1
ALy

NoOUAWN -
>

The running time of HEAP-EXTRACT-MAX is OQ
Constant amount of Work on top of the O (Ig n) tim
The Procedure }lhAP—\NCREASK:~K\‘\ implementsH
tion. The Priority-queue element whose key is to be i
Index i into the ATay. The procedure first updates the key, ", §
SeW Valus. Becauss increasing the key of Alil may violate the ool R/
oy Poeetll AN s SR K e T "3 \)Q
of INSERT ION-SORT from Section 2.1, traverses a path from this node

| @ Il Table of Content D

What do some rules look like?

e Let'sjustlook at Scala & SQL

What do they look like [Scala]

override def fix(implicit doc: SemanticDocument): Patch = {

val readerMatcher =

SymbolMatcher.normalized("org.apache.spark.sql.DataFrameReader")

val jsonReaderMatcher =

SymbolMatcher.normalized("org.apache.spark.sql.DataFrameReader.json")

val utils = new Utils()

def matchOnTree(e: Tree): Patch = {
e match {

case ns @ Term.Apply(jsonReaderMatcher(reader), List(param)) =>

What do they look like [Scala] (continued)

param match {
case utils.rddMatcher(rdd) =>
(Patch.addLeft(rdd, "session.createDataset(") +
Patch.addRight(rdd, ")(Encoders.STRING)") +

utils.addImportIfNotPresent(importer"org.apache.spark.sql.Encoders"))
case _ =>

Patch.empty

What do they look like [Scala] (continued)

case elem @ _ =>
elem.children match {
case Nil => Patch.empty

case _ => elem.children.map(matchOnTree).asPatch

}

matchOnTree(doc.tree)

¥

SQL rules: It's like an AST transform but....

def _eval(self, context: RuleContext) -> Optional[LintResult]:
functional context = FunctionalContext(context)
children = functional_context.segment.children()
function_name_id _seg = (
children.first(sp.is_type("function_name"))
.children()

.first(sp.is_type("function_name_identifier"))[0]

eh

SQL rules: It's like an AST transform but.... eh

raw_function_name = function_name_id_seg.raw.upper().strip()
function_name = raw_function_name.upper().strip()
bracketed_segments = children.first(sp.is_type("bracketed"))
if function_name == "APPROX_PERCENTILE" or function_name == "PERCENTILE_APPROX":
expression_count = 0@
expression_segment = None
Find "middle" of the approx_percentile(bloop) (e.g. bloop)
for segment in bracketed_segments.children().iterate_segments(

sp.is_type("expression™)

SQL rules: It's like an AST transform but.... eh

expression_count += 1
if expression_count ==
expression_segment = segment
if expression_segment is not None:
expression_child = expression_segment.children().first()
cast can either be a keyword or a function depending on if were iterating on
parsed on updated code.
if expression_child[@].type == "keyword":
if expression_child.child[@].raw == "cast":

return None

SQL rules: It's like an AST transform but....

elif expression_child[@].type == "function":
function_name_id_seg = (
expression_child.children()
first(sp.is_type("function_name™))
.children()

first(sp.is_type("function_name_identifier"))[0]

eh

SQL rules: It's like an AST transform but.... eh

raw_function_name = function_name_id_seg.raw.upper().strip()
function_name = raw_function_name.upper().strip()
If we see a cast then we know this was already fixed.
if function_name == "CAST":
return None

expression_child = expression_child[9]

SQL rules: It's like an AST transform but.... eh

edits = [
KeywordSegment("cast"),
SymbolSegment (" (", type="start_bracket"),
expression_child,
WhitespaceSegment(),
KeywordSegment("as"),
WhitespaceSegment(),
KeywordSegment("int"),

SymbolSegment(")", type="end_bracket"),

How do we know if it worked?

e Hope is not a plan
Tests? (See https://github.com/holdenk/spark-testing-base)
e |akeFS or Iceberg + side by side runs

https://github.com/holdenk/spark-upgrade/tree/main/pipelinecompare
o An extension of the WAP pattern — see Michelle Winters from Netflix in her talk "Whoops the
Numbers are Wrong."
o We tried to do opt-out but ended up having to do opt-in tagging
o Added some extensions to pick up changed partitions and not validate "too large" jobs

e Validation queries

o SodaCL
o https://datatest.readthedocs.io/en/latest/intro/pipeline-validation.html
o spark-expectations

https://github.com/holdenk/spark-testing-base
https://github.com/holdenk/spark-upgrade/tree/main/pipelinecompare
https://www.youtube.com/watch?v=fXHdeBnpXrg
https://www.youtube.com/watch?v=fXHdeBnpXrg
https://github.com/sodadata/soda-core
https://datatest.readthedocs.io/en/latest/intro/pipeline-validation.html
https://engineering.nike.com/spark-expectations/latest/

Is that expensive? Does it catch everything?

e Yes
o Beyond doubling the cost for shadow jobs comparisons themselves took substantial compute
resources.
e No

o Jobs with side effects
o Non-deterministic jobs
etc.

DEMO TIME

Let's hope it does not crash. Yay!

Ok, but where doesn't this work well?

e Dependencies
o In my super informal survey of folks the #1 reason blocking upgrade was ElasticSearch
connector
e Programming language version change
o The reality is there's a lot of Scala 2.11 code out there, our resources are focused on

2.12->2.13 migration's but folks are further back
o Scala version change was the #2 reason blocking Spark upgrades for folks

e API changes (what this "solves") came in #3

In conclusion:

e If you want to upgrade Spark and are lazy —
https://qithub.com/holdenk/spark-upgrade

e The good news is we haven't made a system so powerful we can change
APIs without caring

e The bad news is the same

e The excellent news is: my dog is cute AF

https://github.com/holdenk/spark-upgrade

