

Power Grid Model

A High-Performance Distribution Grid Calculation Library

Nitish Bharambe Scientific Software Engineer, Alliander N.V.

Summary

- Power Grid Model: an open-source project for distribution power system calculation
 - https://github.com/PowerGridModel
- In this presentation
 - Why a new project?
 - What is Power Grid Model?
 - How does it perform?
 - Deployment inside Alliander
 - Road to open-source

Traditional workflow for power system analysis

Modern workflow for power system analysis

Modern workflow for power system analysis

What makes a good power system calculation model/library?

Why Power Grid Model (PGM)?

• Unique propositions of Power Grid Model

Power Grid Model

- Power System Calculation Functionalities
- Symmetric and asymmetric calculation
- Power flow
 - Newton-Raphson
 - Iterative current (equivalent to backwards/forwards for radial network)
 - Linear current (approximation)
 - Linear impedance (approximation)
- State estimation
 - Iterative linear method
- Short circuit calculation

Power Grid Model

- Power System Calculation Functionalities
- Efficient implementation in C++
 - Native shared-memory multi-threading for parallelization in batch calculations
- API in Python
 - Stable and easy-to-use
 - Well-documented
- Cross-platform
 - Publish binary Python packages in PyPI and conda-forge
 - https://pypi.org/project/power-grid-model/
 - https://anaconda.org/conda-forge/power-grid-model
 - Built for Windows (x64), Linux (x64/arm64), macOS (x64/arm64)

Model Validation

- Validation of the library against reference models with 80+ test cases
 - Hand calculation
 - Vision
 - Gaia
 - PowerFactory
 - PandaPower
- Continuous validation as part of CI pipeline in GitHub Actions

Performance Benchmark

- Compare performance of Power Grid Model, PandaPower, and OpenDSS
 - https://github.com/PowerGridModel/power-grid-model-benchmark
 - 1000 nodes radial network
 - Time-series symmetric and asymmetric power flow calculation in 1000 steps
 - Testing environment: Intel i7-12700H, 64 GB RAM, single-thread in Linux (WSL)
 - Library version:

```
power-grid-model == 1.4.65
Pandapower == 2.12.1
dss-python == 0.14.1
```


Performance Benchmark

Performance Benchmark

Current Deployment

- Data conversions
 - CIM
 - Vision
 - GridCal
 - PandaPower
 - Gaia (pending)

Current Deployment

A fundamental building block for Alliander

Deployed in 10+ applications inside Alliander

Road to Open Source

Ways of collaboration and contribution*

* https://github.com/PowerGridModel/.github/blob/main/CONTRIBUTING.md

Road to Open Source

Current active partner

