A few limitations in the available
fs-related system calls...

Nick Kossifidis <mick@ics.forth.gr>

.

.\Qig@i’“ RISC-V for Cloud Services 2/

Horizon Europe
2021-2027

1 T ~ - o RISC-V Processors
httDS./ [riser project.eu S Source: EPI and EUPilot projects (chips)

-) * Currently operatingon system
(N boards designed for dev/test purposes
: . : L) " RISER: RISC-V based Linux server for = _\~_ _______ —
:) o ’ i . DRAM M
https://twitter.com/RiserProject ,. otd serite bt o e lome Haces Server Boards (PCB + firmware) j
© Standard form factors (PCle
accelerator card, Microserver) -| NVM-Express Storage |

* Following industry standards to 1

utilize server 1/O peripherals -l 1(:0 Gbps Ethernet |

RISER: RISC-V for Cloud Services

EXTOLL.

latency matters.

Boot Firmware
Initialization of execution platform,
Including high-speed I/0
peripherals (storage, networking)

|
0S, drivers, runtime
Configured/adapted for cloud services:
workload acceleration, networked
storage, containerized execution

o o o e e — — ow—

\ *Integrationin laaS environment /7
& ~ - -
A O Contact: Dr. Manolis Marazakis
Integrated all-European Hardware and Open-Source Organization: FORTH (Greece)

Software Email: maraz@ics.forth.gr

for Cloud Services and Applications

https://riser-project.eu/
https://twitter.com/RiserProject

Copying afile...

e Preserve file data

o Time efficiency
o Space efficiency

e Preserve file metadata
o Permission bits

Ownership (user/group)

Timestamps

Old school attributes

Extended attributes

o O O O

System calls for copying data...

e The naive approach: open(), read(), write(), close()

o The most generic/portable way but very inefficient

o Datapath goes through userspace, kernel copies to user on read, from user on write
e Using sendfile()

o Linux, FreeBSD (thank you Netflix !)

o Copying is done in-kernel, without going through userspace

o Uses a temporary buffer: source -> buffer (pipe) -> dest

o Probably the most common technique used today
e Using copy_file_range()

o Linux-only

o Takes advantage of fs features (e.g. COW, REFLINK, NFS server-side copy etc), and in the future will

also take advantage of hw features (e.g. NVme simple copy)
o This is meant to be the new/default API for this

® Preserve holes on sparse files: Iseek(SEEK_DATA/SEEK_END), ftruncate()

System calls for preserving metadata...

Permission bits using {f}chmod{at}()

Ownership using {f,I}chown{at)}()

atime/mtime using utimens{at}()

Preserve old-style 32bit attributes mask using ioctl(FS_IOC_{G,S}JETFLAGS)

*
* We have recently hoisted FS_IOC_FSGETXATTR / FS_IOC_FSSETXATTR from
* XFS to the generic FS level interface. This uses a structure that
* has padding and hence has more room to grow, so it may be more

* appropriate for many new use cases.
*
*
*
M

Please do not change these flags or interfaces before checking with
linux-fsdevel@vger.kernel.org and linux-api@vger.kernel.org.

#define FS_SECRM_FL 0x00000001 /% Secure deletion %/

#define FS_UNRM_FL 0x00000002 /* Undelete */

#define FS_COMPR_FL 0x00000004 /* Compress file %/

#define FS_SYNC_FL 0x00000008 /* Synchronous updates */

#define FS_IMMUTABLE_FL 0x00000010 /* Inmutable file %/

#define FS_APPEND_FL 0x00000020 /% writes to file may only append */
#define FS_NODUMP_FL 0x00000040 /% do not dump file */

#define FS_NOATIME_FL 0x00000080 /* do not update atime */

/% Reserved for compression usage... */

#define FS_DIRTY_FL 0x00000100

#define FS_COMPRBLK_FL 0x00000200 /% One or more compressed clusters %/
#define FS_NOCOMP_FL 0x00000400 /* Don't compress */

/% End compression flags —- maybe not all used ¥/

#define FS_ENCRYPT_FL 0x00000800 /* Encrypted file %/

#define FS_BTREE_FL 0x80001000 /% btree format dir +/

#define FS_INDEX_FL 0x00001000 /* hash-indexed directory */
#define FS_IMAGIC_FL 0x00002000 /* AFS directory %/

#define FS_JOURNAL_DATA_FL 0x00004000 /* Reserved for ext3 %/

#define FS_NOTAIL_FL 0x00008000 /+ file tail should not be merged /
#define FS_DIRSYNC_FL 0x80010000 /% dirsync behaviour (directories only) /
#define FS_TOPDIR_FL 0x00020000 /% Top of directory hierarchiesx/
#define FS_HUGE_FILE_FL 0x00040000 /% Reserved for extd %/

#define FS_EXTENT_FL 0x00080000 /* Extents */

#define FS_VERITY_FL 0x80100000 /% Verity protected inode %/
#define FS_EA_INODE_FL 0x00200000 /* Inode used for large EA %/
#define FS_EOFBLOCKS_FL 0x00400000 /% Reserved for extd x/

#define FS_NOCOW_FL 0x00800000 /+ Do not cow file */

#define FS_DAX_FL 0x02000000 /* Inode is DAX */

#define FS_INLINE_DATA_FL 0x10000000 /% Reserved for extd %/

#define FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
#define FS_CASEFOLD_FL 0x40000000 /% Folder is case insensitive /
#define FS_RESERVED_FL 0x80000000 /% reserved for ext2 lib ¥/

#define FS_FL_USER_VISIBLE 0x0003DFFF /% User visible flags /

#define F SER_MODIFIABLE 0x000380FF /* User modifiable flags */

System calls for preserving metadata...

e Extended attributes (key:value pairs), using {list,set,get}xattr()
"POSIX" ACLs (acl(7)): system.posix_acl_access/default

NFSv4 ACLs (honored by the nfs client): system.nfs4acl/nfs4_acl
Inline-data (ext4(5)): system.data

Per-file capabilities (capabilities(7)): security.capability

SELinux file contexts: security.selinux/security.sehash
AppArmor labels (apparmor_xattrs(7)): e.g. security.apparmor
SMACK attributes: security. SMACK64*

Integrity measurement: security.evm/security.ima

Privileged userspace stuff: trusted.”

Unprivileged userspace stuff: user.*

and more...

Honor /etc/xattrs.conf, that includes xattr patterns to skip

(@)

o o0 o 0o o o o o o o o

Issues so far...

e copy._file_range() may expand holes on sparse files
e No io_uring op for sendfile() / copy_file_range()

e The {at} system call variants (using O_PATH descriptors) are very useful !
o But there are no {list,set,get}xattrat() syscalls !
o fchmodat() doesn’t support the AT_EMPTY_PATH flag -> Fixed on 6.6 with fchmodat2()
o utimensat() does support AT_EMPTY_PATH but the man page doesn’t mention it

e [IMHO There should be a single API for file attributes, having to use ioctl()
doesn’t look nice.

e No registry of xattrs used by the kernel, more documentation is needed !
Multiple xattrs cannot be set through xattr API.

Capabilities required for backup...

For read access to files we don’t own: CAP_DAC_READ_SEARCH

For preserving special files (devices/sockets etc). CAP_MKNOD

For preserving ownership: CAP_CHOWN

For chmod/utimens, attrs, most xattrs, using O_NOATIME etc: CAP_FOWNER

o If we have CAP_CHOWN we can skip this, we can preserve all we can and then change owner

For the APPEND/IMMUTABLE attr: CAP_LINUX_IMMUTABLE
For security.capabilities: CAP_SETFCAP

For security/trusted xattrs: CAP_SYS_ADMIN -> That’s overkill !
This is confusing and inconsistent !

When to backup a file...

e We can track data changes through mtime/size and compare between src/dst

o But this is insecure/unreliable.
o Rsync does crc32 which is still insecure, we could do e.g. SHA on both src/dst but that also has

a serious overhead.
o We could use IMA (security.ima) but that’s not available over NFS.
o We could compare ctime to make sure that mtime wasn’t modified since our last backup but we

can’t preserve ctime on dst to do the comparison!
e We can’t track metadata changes without reading them all (including all xattrs) !
o Also because ctime cannot be preserved on dst, so we can’t compare it with src.

On preserving ctime for comparison...

e Why are we able to preserve atime/mtime and not ctime ?
o There is a chicken-and-egg issue, since changing ctime should also update ctime
o It's the most reliable way to determine if a file’s data/metadata changed, better let the kernel
handle it
e But there are ways around this for privileged users
o One can set the system time and force a ctime update by performing a modification on
data/metadata
o It’s possible to modify the data on-disk, like | did for example with ext4backup
(https://github.com/mickflemm/ext4backup)
o It could even be done without unmounting the partition, using fsfreeze.
e And in some cases it’'s not maintained in a consistent way e.g. for networked
file systems (look for S_NOCTIME).
e So why not have a privileged API (e.g. a flag on utimens{at} or something new,

with a proper capability e.g. CAP_CTIME) ?

https://github.com/mickflemm/ext4backup

What about btime/crtime ?

e |t's probably more useful as it is, no need to preserve it.
o There are cases where a file will be re-created on edit (e.g. vi does that) so btime/crtime says
nothing about when the file’s contents were created.
o We could however have a standard xattr for file content creation (in case it’s not supported by
the file format).

e BTW NFS server exports btime/crtime but NFS client doesn’t use it.

Backing up encrypted files...

e With eCryptfs -> just copy the encrypted files (and “/.ecryptfs etc)

e With fscrypt -> Not possible !
o We can use statx to see if a file/dir/symlink is encrypted (STATX_ATTR_ENCRYPTED)
o We can determine if the required key is present (so that we can copy them unencrypted)
m Forregular files we can try to open() them and fail with ENOKEY
m For dirs we can do an ioctl()
m For symlinks -> Not possible !
o No way to copy data in encrypted form!

Summary...

e Add {list,set,get}xattrat() syscalls.

e Wrap old attrs as xattrs so that we don’t use ioctl(FS_IOC_{G,S}ETFLAGS) and have a
common API for all attributes.

e Add a flag to copy_file_range() to preserve holes on sparse files, and also make it a
io_uring op.

e Document all special xattrs / those used/set by the kernel, and the required
capabilities to get/set them. Maybe also a new capability to set security/trusted xattrs
without requiring CAP_SYS_ADMIN.

e Come up with a way to get a file’s measurement (or even just a hash of its
data/metadata, as long as it’s only the kernel that can set it) without having to read
the whole thing in userspace, that works over NFS.

e Come up with a privileged API to preserve ctime.

e Come up with an API for backing up fscrypt files in encrypted form.

Questions ?

Thank you!

