\

‘G.ryptography vs Al

Deepfake resistant WebRTC video calls,
- trustless P2P networks and other shenanigans

2

Yup, this is a clickbait title \&/

Project requirements

e A fully featured video+audio chat with minimal
server requirements
e No centrally stored identity...

e ...but a basic auth mechanism, to ensure genuine
identity

LET'S USE

Why tho?

- Digital signatures are everywhere and foolproof

e Keypairs are widespread, choose your poison:
o FIDO/WebAuthn

o Crypto wallets

JNCllsNelllssh-keygen -t ecdsa

Alice

Hello | _ Sign ‘/H

Bobh!
+ Alice's
private key

Hello
BOb! BE45957$

785039E

Bob +
Hello _— e
Bob! < Verlfy
: Alice's

public key

Beyond sign and verify , you can even
generate or derive keys from your browser !

(that’s what this talk is about btw)

HERE CDMES & - THEPLAN

Basic overview

e Afirst client (= host) creates a new room on the signaling server (with a
unique 1D), by opening a websocket connection

e The host can send a special type of message on the socket which lets them
whitelist a set of public keys

e \Whenever a new peer wants to connect to the chat, the server asks the
newcomer to sign a special payload containing the room ID, alongside a
timestamp (to avoid replay attacks)

e |[f the signature matches the payload, and the public key is in the whitelist, let
them reach the other peers

e Rinse and repeat

A Warning: This API provides a number of low-level cryptographic primitives. It's very easy to

misuse them, and the pitfalls involved can be very subtle.

Even assuming you use the basic cryptographic functions correctly, secure key
management and overall security system design are extremely hard to get right, and are
generally the domain of specialist security experts.

Errors in security system design and implementation can make the security of the system
completely ineffective.

Please learn and experiment, but don't guarantee or imply the security of your work before
an individual knowledgeable in this subject matter thoroughly reviews it. The Crypto 101

Course 2 can be a great place to start learning about the design and implementation of
secure systems.

tl;dr: This project is for fun,
don’t screw up with key management

Cryptography is typically bypassed, not penetrated.

Adi Shamir

e

U

-)

SUUE R |

é

— ey

Importing a private key (client side)

const loadKey = async (data: BufferSource) => {

const key = await crypto.subtle.importKey(PKCSS iS the Standard format
'pkes8’, used by ssh-keygen

data,
{
name: 'ECDSA',

namedCurve: 'P-256",

b
true, We're using Elliptic Curve

["sign']

; signature

return key

} We specify that we want to use this key

for signing

Websocket handshake overview

type ServerPayloadType = { . , .
oG e This is the payload we're getting

issuedAt: string, from the server.
} issuedAt is a ISO-8601 timestamp

type SignedPayloadType = {
payload: ServerPayloadType,

signature: ArrayBuffer, This is the signed payload
publicKey: JsonWebKey, that we send back to the server

Signing a payload (client side)

const sign = async (
key: CryptoKey,
payload: ServerPayloadType
) : Promise<SignedPayloadType > => {
const signable = new TextEncoder () .encode (
JSON.stringify (payload)
)
const signature = await crypto.subtle.sign (
{
name: 'ECDSA',
hash: { name: 'SHA-256" 1},
by
key,
signable

return {
payload,
signature,

publicKey : await crypto.subtle.exportKey ('jwk',

key)

Verifying the payload (server side)

const verifyPayload = async (payload: SignedPayloadType): boolean => {
const key = await crypto.subtle.importKey (
'jwk', payload.publicKey, 'ECDSA', false, ['verify']
)
const signable = new TextEncoder () .encode (
JSON.stringify (payload.payload)
)
return crypto.subtle.verify (
{
name: 'ECDSA',
hash: { name: 'SHA-256"' },
b
key,
payload.signature,

signable

A quick look at the signaling server (1/3)

socket.on ('message', (message) => {
const data = JSON.parse (message) ;
if (data.type === 'request')

return sendAuthPayload ()
if (data.type === 'auth')

return connectPeer ()

A quick look at the signaling server (2/3)

The connectPeer function looks if;

e The public key is valid for the roomlId
e The issuedAt timestamp is still in an acceptable range
e The signature matches the payload and the public key

If all is good it broadcasts (= emits to all connected socket client except the one
that sent the auth request) the peer information to all the other connected peers.

A quick look at the signaling server (3/3)

RTCPeerConnection objects are a pain in the bum to manage, @feross
simple-peer simplifies the process of generating the objects.

https://github.com/feross/simple-peer

Requesting identity checks from peer to peer

Now that we have established a link between client A and B, clients can create
custom logic to revoke a peer connection.

e.g.: A “confirm your identity!” button that asks for a new signature of the peers
from client A to client B.

Using subtleCrypto.encrypt() / .decrypt() on datachannels

WeDbRTC can also be used to stream arbitrary data between peers, using
datachannels.

The subtleCrypto API also features a set of helpers around asymmetric
encryption/decryption methods.

e.g.: One peer could decide to send their public encryption key (ex: RSA) to the
others as to create a seamless end-to-end encrypted stream.
(short reminder that you should not use the same keypair for encryption and

sighing @)

This is your call to go further down the p2p
rabbit hole...

EY ALREADY

Webtorrent

WebTorrent is a streaming torrent client for node.js and the
browser. In the browser, WebTorrent uses WebRTC (data
channels) for peer-to-peer transport.

IPFS

The InterPlanetary File System (IPFS) is a protocol, hypermedia and file sharing
peer-to-peer network for storing and sharing data in a distributed file system. IPFS
uses content-addressing to uniquely identify each file in a global namespace

connecting IPFS hosts.

aleph.im

aleph.im is an open-source peer-to-peer network and decentralized cloud
computing solution built on top of IPFS.

@Bjrint

@Bonjourlnternet

.

- —
-

Identity theft is not a joke, Jim!
Millions of families suffer every year!

- e am =

HFUNNY.C®

