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◮ open source, GPLv2

◮ developed at Univ. Illinois Urbana-Champaign (v1.0.0 back in 2007)

◮ ”box model” (process studies) with a coupler to WRF (weather prediction model)

◮ simulating air pollution evolution through particle coagulation, condensation,
chemical reactions, ...

◮ object-oriented architecture, F90, extensive automated test suite

◮ usage poses challenges, e.g., to students intending to use it from Jupyter notebooks
(dependencies, compilation, updates, automation usually through shell,
multi-text-file i/o, output analysis requiring bringing in Fortran, ...)

https://lagrange.mechse.illinois.edu/partmc/
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◮ lower the entry threshold for installing and setting up of PartMC

down to pip install PyPartMC, i.e., no manual dependency installation,
no compilation, user doesn’t even need to know FORTRAN is involved

◮ ensure the same experience on Linux, macOS & Windows

◮ lower the entry threshold for usage with Jupyter-based example notebooks

◮ streamline the dissemination of paper-result reproducers (peer review)
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status of the project: v1.0 in Dec 2023 (started 2021)
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Python bindings generated using pybind11

◮ three-language build automation with CMake, test automation with pytest, CI workflows

◮ JSON-based reimplementation of PartMC ”spec-file” i/o module
(unmodified code of PartMC uses original API)
 minimising effort to accommodate future additions to PartMC

◮ freeing of Python-allocated PartMC FORTRAN types through Python Garbage Collector

◮ dependency version pinning with git submodules: PartMC (F), CAMP (C/F), json (C++),
pybind11 (C++), json-fortran (F), netCDF (C/F), SUNDIALS (F/C), SuiteSparse (C), ...
& backports of C++20 features to C++17 (multilinux!): span, string view, optional

◮ all dependencies (incl. Fortran and C++ runtimes) statically linked (single-file install)
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user perspective: Python (PyPartMC) & Julia (via PyCall.jl)
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user perspective: Matlab (built-in Python bridge)

ppmc = py.importlib.import_module('PyPartMC');
si = py.importlib.import_module('PyPartMC').si;

aero_data = ppmc.AeroData(py.tuple({ ...

py.dict(pyargs("OC", py.tuple({1000 * si.kg/si.m^3, 0, 1e-3 * si.kg/si.mol, 0.001}))), ...

py.dict(pyargs("BC", py.tuple({1800 * si.kg/si.m^3, 0, 1e-3 * si.kg/si.mol, 0}))) ...

}));

aero_dist = ppmc.AeroDist(aero_data, py.tuple({ ...

py.dict(pyargs( ...

"cooking", py.dict(pyargs( ...

"mass_frac", py.tuple({py.dict(pyargs("OC", py.tuple({1})))}), ...

"diam_type", "geometric", ...

"mode_type", "log_normal", ...

"num_conc", 3200 / si.cm^3, ...

"geom_mean_diam", 8.64 * si.nm, ...

"log10_geom_std_dev", .28 ...

)) ...

)), ...

py.dict(pyargs( ...

"diesel", py.dict(pyargs( ...

"mass_frac", py.tuple({ ...

py.dict(pyargs("OC", py.tuple({.3}))), ...

py.dict(pyargs("BC", py.tuple({.7}))), ...

}), ...

"diam_type", "geometric", ...

"mode_type", "log_normal", ...

"num_conc", 2900 / si.cm^3, ...

"geom_mean_diam", 50 * si.nm, ...

"log10_geom_std_dev", .24 ...

)) ...

)) ...

}));

n_part = 100;
aero_state = ppmc.AeroState(aero_data, n_part, "nummass_source");
aero_state.dist_sample(aero_dist);
masses = cell(aero_state.masses());
num_concs = cell(aero_state.num_concs);
fprintf('%g # kg/m3\n', dot([masses{:}], [num_concs{:}]))
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github.com/open-atmos/PyPartMC/actions/

Triggered via schedule 2 days ago

slayoo  6b59486 main

Status

Success

Total duration

12m 10s

Artifacts

1

Jobs

Run details

Summary

julia

python

fortran

matlab

assert

Usage

Workflow file

julia 4m 27s

python 3m 44s

fortran 36s

matlab 4m 57s

assert

readme_listings.yml

on: schedule



13/17

Fortran

C

C++PythonMatlabJulia

MOSAIC

PartMC

PyPartMC-F

netCDF-F

CAMP

SpecFile-F

SpecFile-C

PyPartMC-C

netCDF-C

SUNDIALS

CAMP C code

PyPartMC-C++

C++ user code

pybind11_json

nlohmann::JSON

SpecFile-C++

NumPy

Python user code

pubind11-generated

PyPartMC module

Matlab built-in

Python interface

Matlab user code

PyCall.jl

Julia user code
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unmodified PartMC code (git submodule)
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json.nlohmann.me
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PyPartMC API docs: https://open-atmos.github.io/PyPartMC/

https://open-atmos.github.io/PyPartMC/
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◮ access to unmodified PartMC internals from Python, Julia, Matlab... and C++

◮ potential for use of PartMC in test suites of other Python packages (already in PySDM)

◮ leverages Python binary dissemination system for PartMC and dependencies (static linkage)

◮ encapsulates simulation setup/input within one single-language file (e.g., for paper review)

◮ allows to extend PartMC simulation logic with Python code (e.g., optics with PyMieScatt)

◮ streamlined workflows for generating simulation ensembles (no need for input text files!)

◮ offering users (students) a single-language familiar environment (Colab, ARM JupyterHub)
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◮ pybind11 as a viable tool for interfacing Fortran and Python
(especially given integration with CMake which handles Fortran well)

◮ Python’s ”glue language” role leveraged: Julia, Matlab, ...

◮ static linkage: on the one hand essential (lack of standardised Fortran ABI);
on the other hand blocks Conda packaging (policy)

◮ git[hub] submodules instrumental for handling 10+ Fortran, C and C++ dependencies

◮ no universal binaries for macOS yet (gfortran help welcome!)

◮ kudos to Mathworks for github.com/matlab-actions

◮ SoftwareX review: actually also concerned code/installation
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