
1/17

engineering Python-to-Fortran bindings

in C++, for use in Julia and Matlab

Sylwester Arabas1, Zach D’Aquino2, Jeff Curtis2, Nicole Riemer2, Matt West3

& [Py]PartMC contributors

atmos.illinois.eduagh.edu.pl FOSDEM '24, ULB, Brussels

1Physics & Applied CS, AGH University of Krakow, Poland (agh.edu.pl)

2Atmospheric Sciences, University of Illinois at Urbana-Champaign (atmos.illinois.edu)

3Mechanical Science & Engineering, University of Illinois at Urbana-Champaign (mechse.illinois.edu)

https://agh.edu.pl/en
https://atmos.illinois.edu/
https://mechse.illinois.edu/

1/17

engineering Python-to-Fortran bindings

in C++, for use in Julia and Matlab

Sylwester Arabas1, Zach D’Aquino2, Jeff Curtis2, Nicole Riemer2, Matt West3

& [Py]PartMC contributors

atmos.illinois.eduagh.edu.pl FOSDEM '24, ULB, Brussels

1Physics & Applied CS, AGH University of Krakow, Poland (agh.edu.pl)

2Atmospheric Sciences, University of Illinois at Urbana-Champaign (atmos.illinois.edu)

3Mechanical Science & Engineering, University of Illinois at Urbana-Champaign (mechse.illinois.edu)

https://agh.edu.pl/en
https://atmos.illinois.edu/
https://mechse.illinois.edu/

2/17

https://lagrange.mechse.illinois.edu/partmc/

https://lagrange.mechse.illinois.edu/partmc/

2/17

https://lagrange.mechse.illinois.edu/partmc/

◮ Monte-Carlo aerosol dynamics simulation package

https://lagrange.mechse.illinois.edu/partmc/

2/17

https://lagrange.mechse.illinois.edu/partmc/

◮ Monte-Carlo aerosol dynamics simulation package

◮ open source, GPLv2

https://lagrange.mechse.illinois.edu/partmc/

2/17

https://lagrange.mechse.illinois.edu/partmc/

◮ Monte-Carlo aerosol dynamics simulation package

◮ open source, GPLv2

◮ developed at Univ. Illinois Urbana-Champaign (v1.0.0 back in 2007)

https://lagrange.mechse.illinois.edu/partmc/

2/17

https://lagrange.mechse.illinois.edu/partmc/

◮ Monte-Carlo aerosol dynamics simulation package

◮ open source, GPLv2

◮ developed at Univ. Illinois Urbana-Champaign (v1.0.0 back in 2007)

◮ ”box model” (process studies) with a coupler to WRF (weather prediction model)

https://lagrange.mechse.illinois.edu/partmc/

2/17

https://lagrange.mechse.illinois.edu/partmc/

◮ Monte-Carlo aerosol dynamics simulation package

◮ open source, GPLv2

◮ developed at Univ. Illinois Urbana-Champaign (v1.0.0 back in 2007)

◮ ”box model” (process studies) with a coupler to WRF (weather prediction model)

◮ simulating air pollution evolution through particle coagulation, condensation,
chemical reactions, ...

https://lagrange.mechse.illinois.edu/partmc/

2/17

https://lagrange.mechse.illinois.edu/partmc/

◮ Monte-Carlo aerosol dynamics simulation package

◮ open source, GPLv2

◮ developed at Univ. Illinois Urbana-Champaign (v1.0.0 back in 2007)

◮ ”box model” (process studies) with a coupler to WRF (weather prediction model)

◮ simulating air pollution evolution through particle coagulation, condensation,
chemical reactions, ...

◮ object-oriented architecture, F90, extensive automated test suite

https://lagrange.mechse.illinois.edu/partmc/

2/17

https://lagrange.mechse.illinois.edu/partmc/

◮ Monte-Carlo aerosol dynamics simulation package

◮ open source, GPLv2

◮ developed at Univ. Illinois Urbana-Champaign (v1.0.0 back in 2007)

◮ ”box model” (process studies) with a coupler to WRF (weather prediction model)

◮ simulating air pollution evolution through particle coagulation, condensation,
chemical reactions, ...

◮ object-oriented architecture, F90, extensive automated test suite

◮ usage poses challenges, e.g., to students intending to use it from Jupyter notebooks
(dependencies, compilation, updates, automation usually through shell,
multi-text-file i/o, output analysis requiring bringing in Fortran, ...)

https://lagrange.mechse.illinois.edu/partmc/

3/17

4/17

project goals

◮ lower the entry threshold for installing and setting up of PartMC

down to pip install PyPartMC, i.e., no manual dependency installation,
no compilation, user doesn’t even need to know FORTRAN is involved

4/17

project goals

◮ lower the entry threshold for installing and setting up of PartMC

down to pip install PyPartMC, i.e., no manual dependency installation,
no compilation, user doesn’t even need to know FORTRAN is involved

◮ ensure the same experience on Linux, macOS & Windows

4/17

project goals

◮ lower the entry threshold for installing and setting up of PartMC

down to pip install PyPartMC, i.e., no manual dependency installation,
no compilation, user doesn’t even need to know FORTRAN is involved

◮ ensure the same experience on Linux, macOS & Windows

◮ lower the entry threshold for usage with Jupyter-based example notebooks

4/17

project goals

◮ lower the entry threshold for installing and setting up of PartMC

down to pip install PyPartMC, i.e., no manual dependency installation,
no compilation, user doesn’t even need to know FORTRAN is involved

◮ ensure the same experience on Linux, macOS & Windows

◮ lower the entry threshold for usage with Jupyter-based example notebooks

◮ streamline the dissemination of paper-result reproducers (peer review)

5/17

status of the project: v1.0 in Dec 2023 (started 2021)

6/17

pybind11

7/17

7/17

8/17

developer perspective

◮ written in C/Fortran/C++ as C++ bindings to PartMC internals (derived types),
Python bindings generated using pybind11

8/17

developer perspective

◮ written in C/Fortran/C++ as C++ bindings to PartMC internals (derived types),
Python bindings generated using pybind11

◮ three-language build automation with CMake, test automation with pytest, CI workflows

8/17

developer perspective

◮ written in C/Fortran/C++ as C++ bindings to PartMC internals (derived types),
Python bindings generated using pybind11

◮ three-language build automation with CMake, test automation with pytest, CI workflows

◮ JSON-based reimplementation of PartMC ”spec-file” i/o module
(unmodified code of PartMC uses original API)
 minimising effort to accommodate future additions to PartMC

8/17

developer perspective

◮ written in C/Fortran/C++ as C++ bindings to PartMC internals (derived types),
Python bindings generated using pybind11

◮ three-language build automation with CMake, test automation with pytest, CI workflows

◮ JSON-based reimplementation of PartMC ”spec-file” i/o module
(unmodified code of PartMC uses original API)
 minimising effort to accommodate future additions to PartMC

◮ freeing of Python-allocated PartMC FORTRAN types through Python Garbage Collector

8/17

developer perspective

◮ written in C/Fortran/C++ as C++ bindings to PartMC internals (derived types),
Python bindings generated using pybind11

◮ three-language build automation with CMake, test automation with pytest, CI workflows

◮ JSON-based reimplementation of PartMC ”spec-file” i/o module
(unmodified code of PartMC uses original API)
 minimising effort to accommodate future additions to PartMC

◮ freeing of Python-allocated PartMC FORTRAN types through Python Garbage Collector

◮ dependency version pinning with git submodules: PartMC (F), CAMP (C/F), json (C++),
pybind11 (C++), json-fortran (F), netCDF (C/F), SUNDIALS (F/C), SuiteSparse (C), ...
& backports of C++20 features to C++17 (multilinux!): span, string view, optional

8/17

developer perspective

◮ written in C/Fortran/C++ as C++ bindings to PartMC internals (derived types),
Python bindings generated using pybind11

◮ three-language build automation with CMake, test automation with pytest, CI workflows

◮ JSON-based reimplementation of PartMC ”spec-file” i/o module
(unmodified code of PartMC uses original API)
 minimising effort to accommodate future additions to PartMC

◮ freeing of Python-allocated PartMC FORTRAN types through Python Garbage Collector

◮ dependency version pinning with git submodules: PartMC (F), CAMP (C/F), json (C++),
pybind11 (C++), json-fortran (F), netCDF (C/F), SUNDIALS (F/C), SuiteSparse (C), ...
& backports of C++20 features to C++17 (multilinux!): span, string view, optional

◮ all dependencies (incl. Fortran and C++ runtimes) statically linked (single-file install)

9/17

user perspective: Fortran (PartMC)

10/17

user perspective: Python (PyPartMC)

10/17

user perspective: Python (PyPartMC) & Julia (via PyCall.jl)

11/17

user perspective: Matlab (built-in Python bridge)

ppmc = py.importlib.import_module('PyPartMC');
si = py.importlib.import_module('PyPartMC').si;

aero_data = ppmc.AeroData(py.tuple({ ...

py.dict(pyargs("OC", py.tuple({1000 * si.kg/si.m^3, 0, 1e-3 * si.kg/si.mol, 0.001}))), ...

py.dict(pyargs("BC", py.tuple({1800 * si.kg/si.m^3, 0, 1e-3 * si.kg/si.mol, 0}))) ...

}));

aero_dist = ppmc.AeroDist(aero_data, py.tuple({ ...

py.dict(pyargs(...

"cooking", py.dict(pyargs(...

"mass_frac", py.tuple({py.dict(pyargs("OC", py.tuple({1})))}), ...

"diam_type", "geometric", ...

"mode_type", "log_normal", ...

"num_conc", 3200 / si.cm^3, ...

"geom_mean_diam", 8.64 * si.nm, ...

"log10_geom_std_dev", .28 ...

)) ...

)), ...

py.dict(pyargs(...

"diesel", py.dict(pyargs(...

"mass_frac", py.tuple({ ...

py.dict(pyargs("OC", py.tuple({.3}))), ...

py.dict(pyargs("BC", py.tuple({.7}))), ...

}), ...

"diam_type", "geometric", ...

"mode_type", "log_normal", ...

"num_conc", 2900 / si.cm^3, ...

"geom_mean_diam", 50 * si.nm, ...

"log10_geom_std_dev", .24 ...

)) ...

)) ...

}));

n_part = 100;
aero_state = ppmc.AeroState(aero_data, n_part, "nummass_source");
aero_state.dist_sample(aero_dist);
masses = cell(aero_state.masses());
num_concs = cell(aero_state.num_concs);
fprintf('%g # kg/m3\n', dot([masses{:}], [num_concs{:}]))

12/17

github.com/open-atmos/PyPartMC/actions/

Triggered via schedule 2 days ago

slayoo 6b59486 main

Status

Success

Total duration

12m 10s

Artifacts

1

Jobs

Run details

Summary

julia

python

fortran

matlab

assert

Usage

Workflow file

julia 4m 27s

python 3m 44s

fortran 36s

matlab 4m 57s

assert

readme_listings.yml

on: schedule

13/17

Fortran

C

C++PythonMatlabJulia

MOSAIC

PartMC

PyPartMC-F

netCDF-F

CAMP

SpecFile-F

SpecFile-C

PyPartMC-C

netCDF-C

SUNDIALS

CAMP C code

PyPartMC-C++

C++ user code

pybind11_json

nlohmann::JSON

SpecFile-C++

NumPy

Python user code

pubind11-generated

PyPartMC module

Matlab built-in

Python interface

Matlab user code

PyCall.jl

Julia user code

13/17

13/17

13/17

13/17

13/17

13/17

unmodified PartMC code (git submodule)

13/17

13/17

13/17

13/17

json.nlohmann.me

14/17

PyPartMC API docs: https://open-atmos.github.io/PyPartMC/

https://open-atmos.github.io/PyPartMC/

15/17

what PyPartMC achieves:

15/17

what PyPartMC achieves:

◮ single-command (pip) install on Windows, Linux & macOS (source-only for ARM)

15/17

what PyPartMC achieves:

◮ single-command (pip) install on Windows, Linux & macOS (source-only for ARM)

◮ access to unmodified PartMC internals from Python, Julia, Matlab... and C++

15/17

what PyPartMC achieves:

◮ single-command (pip) install on Windows, Linux & macOS (source-only for ARM)

◮ access to unmodified PartMC internals from Python, Julia, Matlab... and C++

◮ potential for use of PartMC in test suites of other Python packages (already in PySDM)

15/17

what PyPartMC achieves:

◮ single-command (pip) install on Windows, Linux & macOS (source-only for ARM)

◮ access to unmodified PartMC internals from Python, Julia, Matlab... and C++

◮ potential for use of PartMC in test suites of other Python packages (already in PySDM)

◮ leverages Python binary dissemination system for PartMC and dependencies (static linkage)

15/17

what PyPartMC achieves:

◮ single-command (pip) install on Windows, Linux & macOS (source-only for ARM)

◮ access to unmodified PartMC internals from Python, Julia, Matlab... and C++

◮ potential for use of PartMC in test suites of other Python packages (already in PySDM)

◮ leverages Python binary dissemination system for PartMC and dependencies (static linkage)

◮ encapsulates simulation setup/input within one single-language file (e.g., for paper review)

15/17

what PyPartMC achieves:

◮ single-command (pip) install on Windows, Linux & macOS (source-only for ARM)

◮ access to unmodified PartMC internals from Python, Julia, Matlab... and C++

◮ potential for use of PartMC in test suites of other Python packages (already in PySDM)

◮ leverages Python binary dissemination system for PartMC and dependencies (static linkage)

◮ encapsulates simulation setup/input within one single-language file (e.g., for paper review)

◮ allows to extend PartMC simulation logic with Python code (e.g., optics with PyMieScatt)

15/17

what PyPartMC achieves:

◮ single-command (pip) install on Windows, Linux & macOS (source-only for ARM)

◮ access to unmodified PartMC internals from Python, Julia, Matlab... and C++

◮ potential for use of PartMC in test suites of other Python packages (already in PySDM)

◮ leverages Python binary dissemination system for PartMC and dependencies (static linkage)

◮ encapsulates simulation setup/input within one single-language file (e.g., for paper review)

◮ allows to extend PartMC simulation logic with Python code (e.g., optics with PyMieScatt)

◮ streamlined workflows for generating simulation ensembles (no need for input text files!)

15/17

what PyPartMC achieves:

◮ single-command (pip) install on Windows, Linux & macOS (source-only for ARM)

◮ access to unmodified PartMC internals from Python, Julia, Matlab... and C++

◮ potential for use of PartMC in test suites of other Python packages (already in PySDM)

◮ leverages Python binary dissemination system for PartMC and dependencies (static linkage)

◮ encapsulates simulation setup/input within one single-language file (e.g., for paper review)

◮ allows to extend PartMC simulation logic with Python code (e.g., optics with PyMieScatt)

◮ streamlined workflows for generating simulation ensembles (no need for input text files!)

◮ offering users (students) a single-language familiar environment (Colab, ARM JupyterHub)

16/17

take-home messages & fun facts:

16/17

take-home messages & fun facts:

◮ pybind11 as a viable tool for interfacing Fortran and Python
(especially given integration with CMake which handles Fortran well)

16/17

take-home messages & fun facts:

◮ pybind11 as a viable tool for interfacing Fortran and Python
(especially given integration with CMake which handles Fortran well)

◮ Python’s ”glue language” role leveraged: Julia, Matlab, ...

16/17

take-home messages & fun facts:

◮ pybind11 as a viable tool for interfacing Fortran and Python
(especially given integration with CMake which handles Fortran well)

◮ Python’s ”glue language” role leveraged: Julia, Matlab, ...

◮ static linkage: on the one hand essential (lack of standardised Fortran ABI);
on the other hand blocks Conda packaging (policy)

16/17

take-home messages & fun facts:

◮ pybind11 as a viable tool for interfacing Fortran and Python
(especially given integration with CMake which handles Fortran well)

◮ Python’s ”glue language” role leveraged: Julia, Matlab, ...

◮ static linkage: on the one hand essential (lack of standardised Fortran ABI);
on the other hand blocks Conda packaging (policy)

◮ git[hub] submodules instrumental for handling 10+ Fortran, C and C++ dependencies

16/17

take-home messages & fun facts:

◮ pybind11 as a viable tool for interfacing Fortran and Python
(especially given integration with CMake which handles Fortran well)

◮ Python’s ”glue language” role leveraged: Julia, Matlab, ...

◮ static linkage: on the one hand essential (lack of standardised Fortran ABI);
on the other hand blocks Conda packaging (policy)

◮ git[hub] submodules instrumental for handling 10+ Fortran, C and C++ dependencies

◮ no universal binaries for macOS yet (gfortran help welcome!)

16/17

take-home messages & fun facts:

◮ pybind11 as a viable tool for interfacing Fortran and Python
(especially given integration with CMake which handles Fortran well)

◮ Python’s ”glue language” role leveraged: Julia, Matlab, ...

◮ static linkage: on the one hand essential (lack of standardised Fortran ABI);
on the other hand blocks Conda packaging (policy)

◮ git[hub] submodules instrumental for handling 10+ Fortran, C and C++ dependencies

◮ no universal binaries for macOS yet (gfortran help welcome!)

◮ kudos to Mathworks for github.com/matlab-actions

16/17

take-home messages & fun facts:

◮ pybind11 as a viable tool for interfacing Fortran and Python
(especially given integration with CMake which handles Fortran well)

◮ Python’s ”glue language” role leveraged: Julia, Matlab, ...

◮ static linkage: on the one hand essential (lack of standardised Fortran ABI);
on the other hand blocks Conda packaging (policy)

◮ git[hub] submodules instrumental for handling 10+ Fortran, C and C++ dependencies

◮ no universal binaries for macOS yet (gfortran help welcome!)

◮ kudos to Mathworks for github.com/matlab-actions

◮ SoftwareX review: actually also concerned code/installation

17/17

acknowledgements

https://pypi.org/p/PyPartMC
https://github.com/open-atmos/PyPartMC
https://doi.org/10.1016/j.softx.2023.101613

17/17

acknowledgements

Thank you for your attention!

pypi.org/p/PyPartMC
github.com/open-atmos/PyPartMC
doi:10.1016/j.softx.2023.101613

https://pypi.org/p/PyPartMC
https://github.com/open-atmos/PyPartMC
https://doi.org/10.1016/j.softx.2023.101613

	PyPartMC: context / statement of need
	PyPartMC: goals and status
	PyPartMC: design & implementation outline
	PyPartMC: summary

