6 Thunderbird

How to Exchange Rot
for Rust

2024-02-03 Brendan Abolivier, Ikey Doherty, Sean Burke

Exchange

What we're working on

Support for Microsoft Exchange Web Services mail protocol

e First Rust component for Thunderbird
e First mail protocol to be added in Thunderbird’s lifetime

No one knew how to support a
new protocol

Rot

S
o~
>
o
9
§ O
=
Q
2
Q2
z
(0]
Q
©
©
=
©

https://www.flickr.com/photos/53553325@N06/6608807925

Rot

Decaying architecture, unmaintained code

A brief history of Thunderbird

e Like Firefox, grew out of Netscape Communicator

¢ 0.1 released in July 2003, 1.0 released in December 2004
e Mozilla divested, transferred ownership to community in 2012

e Maintained by the community until rejoining Mozilla Foundation in
2017

Rot

Decaying architecture, unmaintained code

What does that mean for the project?
e Long period of ad hoc changes and fixes without overarching
architectural vision
e Loss of institutional knowledge
e No major architectural maintenance in over 20 years
e Decaying C++, not using modern standards

A significant challenge, but a
significant opportunity

Rust

Rust

Why we chose it

Benefits to a small team

e All the usual reasons
e Memory safety
e Performance

e Modularity and ecosystem

Rust

Why we chose it

Firefox

e Thunderbird is built on top of Gecko
e Build system and ClI tooling already in place
e Integrated into XPCOM, the cross-language interface

Rust

Why we chose it

Looking ahead

» “Permission” to reconsider architecture
e Breaks reliance on old, delicate code paths
e Documentation tooling

Rust

The problems we encountered

Large extant codebase

» APIs and designs which don’t match Rust idioms

e Lots of existing features and capabilities which don’t integrate with
the ecosystem

» Widespread idiosyncratic async patterns

Rust

The problems we encountered

XPCOM + Rust developer experience

e Thunderbird much more reliant on XPCOM than Firefox
e Part of our aging architecture

e Many interfaces, large surface areas, lots of inheritance
« Bindings built around C++ ABI for performance
e Limitations in Rust tooling around including generated bindings

Rust

The problems we encountered

The build system

e Firefox has a C++ entrypoint

e No single point of entry for Rust code

« All crates into a single workspace to avoid duplication
e Thunderbird built as a subtree of Firefox

ecargo doesn't like that
e Solution (kinda): script to merge dependencies and vendor

We can use Rust in
Thunderbird! &

What do we do with it now?

What are we trying to achieve?

e Support Microsoft Exchange
o EWS (Exchange Web Services)
e EWS = XML (SOAP) over HTTP
e More code infrastructure required:
o Send HTTP requests through Necko

o (De)Serialize XML data with scale

®

Interacting with XPCOM

- Cross-Platform Component Object Model
Sending : P J
HTTP e Inter-components interaction

e Platform-neutral interfaces (XPIDL)

requests

e Crossing language boundaries

e Let'suseittointeract with Necko!

Sending
HTTP

requests

ece

#[xpcon: : xpcon(implement (nsIStreanListener), atomic)]
pub struct Listener {}

impl {
pub fn new() < > {
(o))
%
#[allow(non_snake_case)]
unsafe fn OnStartRequest(&self, : *const) =
i

#[allow(non_snake_case)]

unsafe fn OnStopRequest(&self, E Y 5
}
(= (
: *const .
: *const 5
4
)5
fn on_data_available(
&self,
) > > {
let mut sink: Vecs e {o; o5 1
re = unsafe {
let ink . 03
let mut bytes read: =0
(0) &) ()2;
(as * , as
Y
("Data);
k(())
i3
+
fn *const) -> <0), {
ti< >((a.org,
175
let
>((f o
1))
()75
let principal: < -
(unsafe { |p| (p) H?;
let channel: < > = (Ip| unsafe {
(
0,
0,
(08
g 0,
0,
)
b7
unsafe { . ().)k

Step 1: Support async/await

e New internal crate (xpcom async)

e XPCOM async = Rust’s native async

Sending

syntax
HTTP e Custom stream listener:
requeSts o Buffers incoming data

o Wakes a std::task::Waker when
the request finishes
e Wrapped in XpComFuture:
o Triggers XPCOM'’s async

o Implements std:: future: :Future

Step 2: Idiomatic HTTP

e Another new internal crate (moz http)

Sending
HTTP

e Native async interface with xpcom async

e Rust-idiomatic, reqwest-like HTTP client

requests

e Creates and configures XPCOM objects,
wrapped into XpComFuture

e Nice error handling

unsafe { demo () }

Initial exploration

e |ssues with most existing XML crates:

Handling o Handling namespaces and attributes
XML content o Very boilerplatey

e Fine for deserialization, not serialization
o Need namespaces and attributes in
requests
o Loads of data structures and operations in

EWS = low boilerplate

Serializing XML

e External crate (xml struct)

Handling e Code generation using Rust’s procedural
XML content macros

e Dynamic trait implementations at compile
time (derive)
e Built on top of quick-xml

e Low-boilerplate approach

unsafe { demo () }

What's next?

e Implement the damn thing!
o Implement protocol support for EWS in Rust
o Hook this support to the Thunderbird Ul
e Bonus points: generalize the xm1 struct crate if there is

enough interest

Thank you!

