
How Mutation
Testing Got
Practical
FOSDEM '24

1

Hi!
Jan-Jelle Kester
Info Support

Software Engineering Consultant
Trainer
Research Supervisor

 jjkester
 jjkester

2

Mutation testing framework
for JS/TS, C#, Scala, Kotlin

stryker-mutator.io

3

In the next 25 minutes

Why we need to understand our tests

What mutation testing is

How mutation testing got to practical applicability

4

In the next 25 minutes

What mutation testing is

Why we need to understand our tests

How mutation testing got to practical applicability

4.1

In the next 25 minutes

How mutation testing got to practical applicability

Why we need to understand our tests

What mutation testing is

4.2

In the next 25 minutes

How mutation testing got to practical applicability

Why we need to understand our tests

What mutation testing is

State-of-art performance improvements

4.3

A false sense of security
»

5

Source: (2024-01-28)https://www.sonarsource.com/products/sonarqube/

6

https://www.sonarsource.com/products/sonarqube/

Coverage only
means that code is
executed
We can have high code coverage
without asserting anything!

7

Testing the tests
»

8

Mutation testing
Introducing changes in production code,
then checking whether the test suite fails to detect those changes

White-box testing

9

1979: A new type of
software test

Acree, Allen & Budd, Timothy & Demillo, Richard & Lipton, Richard &
Sayward, Fred. (1979). Mutation Analysis.

10

"Recent" popularity

Y. Jia and M. Harman, "An Analysis and Survey of the Development of Mutation Testing," in IEEE Transactions on Software Engineering, vol.
37, no. 5, pp. 649-678, Sept.-Oct. 2011, DOI: 10.1109/TSE.2010.62.

11

Mutation testing process

😀
1. Source code

12

Mutation testing process

😀 → 👽
1. Source code
2. Mutant

12.1

Mutation testing process

😀 → 👽→ ✅ ❌
1. Source code
2. Mutant
3. Killed / survived

12.2

Mutation testing process

😀 → 👽→ ✅ ❌→ 📊
1. Source code
2. Mutant
3. Killed / survived
4. Report

12.3

Mutation operators
Transform operations in source code to one or more mutated versions
of that source code

13

Common mutations

Original Mutated

a + b a - b

a / b a * b

a < b a > b

a == b a != b

a && b a || b

"Cola" ""

[1, 2, 3, 4] []

a > b true

{ ... } {}

14

Mutant states

✅ Killed

👽 Survived

15

Mutant states

✅ Killed

👽 Survived

🙈 No coverage

⏳ Timeout

💥 Runtime

💥 Compile

15.1

Mutant states

✅ Killed

👽 Survived

🙈 No coverage — no tests are reaching the code
⏳ Timeout — mutation caused an infinite loop
💥 Runtime — mutation caused an exception
💥 Compile — mutation resulted in invalid code

15.2

Mutant states

✅ Killed

👽 Survived

🙈 No coverage — no tests are reaching the code
⏳ Timeout — mutation caused an infinite loop
💥 Runtime — mutation caused an exception
💥 Compile — mutation resulted in invalid code
🤥 Ignored

15.3

Mutation score
Is the code tested adequately?

M

mutationScore(M)

= set of mutants {m , ...,m }1 n

= × 100%
M + M + M + M ✅ ⏳ 👽 🙈

M + M ✅ ⏳

16

Mutation score
Is the code that is tested being tested adequately?

M

coveredMutationScore(M)

= set of mutants {m , ...,m }1 n

= × 100%
M + M + M ✅ ⏳ 👽

M + M ✅ ⏳

17

Not all mutants can be killed
While it is easy to reach all your code, it is not possible to write a test
case for every possible internal change of your program

18

Equivalent mutants
function calculateInLoop() {
 var value = 0;
 for (i = 0; i < 10; i++) {
 value += 1;
 }
 return value
}

1
2
3
4
5
6
7

expect(calculateInLoop).to.equal(45); /* ✅ Passes */1

19

Equivalent mutants
function calculateInLoop() {
 var value = 0;
 for (i = 0; i < 10; i++) {
 value += 1;
 }
 return value
}

1
2
3
4
5
6
7

 for (i = 0; i < 10; i++) {

function calculateInLoop() {1
 var value = 0;2

3
 value += 1;4
 }5
 return value6
}7

expect(calculateInLoop).to.equal(45); /* ✅ Passes */1

19.1

Equivalent mutants

 for (i = 0; i != /* 👽 */ 10; i++) { /* ❌ Survived */

function calculateInLoop() {1
 var value = 0;2

3
 value += 1;4
 }5
 return value6
}7

expect(calculateInLoop).to.equal(45); /* ✅ Passes */1

20

Mutation testing is challenging

For a long time, mutation testing was simply not feasible and/or not
easy

🐌 Takes a lot of time

🛠 Requires configuration

👷 Requires tooling support

21

Bridging the gap
»

22

Performance
For every mutation we run the whole test suite once.

t = ∣T ∣ m ∈ Mm

t =M ∣T ∣ =
m∈M

∑ ∣T ∣ × ∣M ∣

23

Performance
For every mutation we run the whole test suite once.

t = ∣T ∣ m ∈ Mm

t =M ∣T ∣ =
m∈M

∑ ∣T ∣ × ∣M ∣

We need to be smarter: !t <M ∣T ∣ × ∣M ∣ 23.1

Performance
Three approaches to improving performance

A. Pizzoleto, F. Ferrari, J. Offutt, L. Fernandes, and M. Ribeiro, “A systematic literature review of techniques and metrics to reduce the cost of
mutation testing,” Journal of Systems and Software, vol. 157, Jul. 2019. DOI: 10.1016/j.jss.2019.07.100.

🏎 Do faster

🦥 Do fewer

🧐 Do smarter

24

Performance
Three approaches to improving performance

A. Pizzoleto, F. Ferrari, J. Offutt, L. Fernandes, and M. Ribeiro, “A systematic literature review of techniques and metrics to reduce the cost of
mutation testing,” Journal of Systems and Software, vol. 157, Jul. 2019. DOI: 10.1016/j.jss.2019.07.100.

🏎 Do faster

🦥 Do fewer

🧐 Do smarter

: 27 studies

: 118 studies

: 75 studies

24.1

Common techniques

🦥 Random mutation

🧐 Higher order mutation

🏎 Parallel execution

🦥 Data-flow analysis

🦥 Control-flow analysis

🧐 Minimization and
prioritization of test sets

🦥 Constrained mutation

🧐 Evolutionary algorithms

🧐 Model-based mutation

🧐 State-based analysis

🦥 Minimal mutation

🦥 Selective mutation

25

Mutation strategies
Placing mutations into source code

26

Source code mutation

👽 Source code Compile Machine code Run tests

👾 Source code Compile Machine code Run tests

✅ Precise

✅ Easy

❌ Slow

Byte code mutation

Source code Compile Byte code

👽 Run tests

👾 Run tests

✅ Fast...ish

❌ False positives

❌ Complicated

27

Byte code mutation

Source code Compile Byte code

👽 Run tests

👾 Run tests

Source code mutation

👽 Source code Compile Machine code Run tests

👾 Source code Compile Machine code Run tests

✅ Precise

✅ Easy

❌ Slow

✅ Fast...ish

❌ False positives

❌ Complicated

27.1

Mutant schemata 🏎

Generate mutants based on source code, but compile once

👽

Source code

👾

Compile Machine code

Run tests on 👽

Run tests on 👾

Roland H. Untch, A. Jefferson Offutt, and Mary Jean Harrold. 1993. Mutation analysis using mutant schemata. SIGSOFT Softw. Eng. Notes
18, 3 (July 1993), 139–148. DOI: 10.1145/174146.154265.

✅ Precise

✅ Fast

🟡 Complicated (but manageable)

28

Coverage analysis 🧐
Test coverage: which code is hit by which tests

Only run tests that cover a mutation instead of the whole test suite

29

Incremental analysis 🦥
Re-use results from a previous run

Only analyze changes from previous run

30

Mutation levels 🦥
Selective mutation approach by Info Support's Jan Smits

User choice depending on requirements

Type of project / domain

Pull request / nightly build

31

Mutation levels 🦥
Selective mutation approach by Info Support's Jan Smits

User choice depending on requirements

Type of project / domain

Pull request / nightly build

Mutation score not necessarily comparable!

31.1

Mutation levels: Callisto

Smits, J. P. G. (2022). Callisto-Selecting Effective Mutation Operators for Mutation Testing (Master's thesis, University of Twente).
, .

Full run of mutation testing as
input

Finds balance between
accuracy and number of test
executions

Summary
@ research.infosupport.com Thesis @ utwente.nl

32

https://research.infosupport.com/publications/callisto-selecting-effective-mutation-operators-for-mutation-testing/
https://research.infosupport.com/publications/callisto-selecting-effective-mutation-operators-for-mutation-testing/
https://essay.utwente.nl/89294/

Mutation levels: project Xavier
Mutation levels implementation in Stryker JS

Hot off the press: implementation done, openpull request #4686

33

https://github.com/stryker-mutator/stryker-js/pull/4686

Mutation levels: project Xavier
Mutation levels implementation in Stryker JS

Hot off the press: implementation done, openpull request #4686

Implemented by a project group of CS master students from the
University of Twente

33.1

https://github.com/stryker-mutator/stryker-js/pull/4686

Mutation levels: project Xavier
Mutation levels implementation in Stryker JS

Hot off the press: implementation done, openpull request #4686

Implemented by a project group of CS master students from the
University of Twente

Documentation to follow...

33.2

https://github.com/stryker-mutator/stryker-js/pull/4686

Further reducing test runs 🧐
Analyze multiple mutants per test run

Minimal number of test runs

Combine mutants that do not influence each other

No negative effects on accuracy

34

Further reducing test runs 🧐
Analyze multiple mutants per test run

Minimal number of test runs

Combine mutants that do not influence each other

No negative effects on accuracy

Current graduation project of CS master student at Info Support

34.1

Time to test your tests!
»

35

In general
A lot of progress in 45 years

Better hardware

Lots of process improvements

36

In general
A lot of progress in 45 years

Better hardware

Lots of process improvements

We have production-ready tooling

Integrates with build tool

Uses information already provided by your tests

Ability to run on CI pipeline

36.1

Mutation testing for your language of choice

Language Framework

JavaScript & TypeScript StrykerJS

Scala Stryker4s

C# Stryker.NET

Java PIT

PHP InfectionPHP

Ruby Mutant

Python Cosmic Ray

C/C++ Mull

Go Gremlins

Swift Muter

More options available: (or search
${lang} mutation testing)

https://github.com/theofidry/awesome-mutation-testing

37

https://github.com/theofidry/awesome-mutation-testing

Conclusion
Mutation testing is testing the tests

Don't rely on code coverage, use mutation score to check
assertions

A lot of research in performance improvements

Still open research questions

Applicable now

38

Conclusion

Don't rely on code coverage, use mutation score to check
assertions

Mutation testing is testing the tests

A lot of research in performance improvements

Still open research questions

Applicable now

38.1

Conclusion

A lot of research in performance improvements

Mutation testing is testing the tests

Don't rely on code coverage, use mutation score to check
assertions

Still open research questions

Applicable now

38.2

Conclusion

Applicable now

Mutation testing is testing the tests

Don't rely on code coverage, use mutation score to check
assertions

A lot of research in performance improvements

Still open research questions

38.3

Get started with StrykerJS

Who's testing the tests? Mutation testing with
StrykerJS
Saturday, 18:30-19:00
Javascript devroom, H.1301 (Cornil)

Watch back the slides and/or video online

39

https://fosdem.org/2024/schedule/event/fosdem-2024-1683-who-s-testing-the-tests-mutation-testing-with-strykerjs/

Mutation testing framework
for JS/TS, C#, Scala, Kotlin

stryker-mutator.io

Jan-Jelle Kester

Software Engineering Consultant
Trainer
Research Supervisor

 jjkester
 jjkester

research.infosupport.com

40

