How Mutation

Testing Got
Practical

FOSDEM 24

[

Bk e e e b b b b b b

r|

A

A

Al

il a al

rFrepr|
FrrEEr
I
FFFFFFFF
FFFFFFFFFF
FFFFrFrFrFrFrrrrr

//

TYTYTTYY
B B |
b B |
e B B B B |
e e B B B b |
B B B |
e e B |
B B |
e e B |
b B |
|

b |

b |

k|

A

TN
b
TN
b

4 =
Hi!
Jan-lelle Kester
Info Support

Software Engineering Consultant
Trainer
Research Supervisor

) jjkester
M jjkester

NN

i

I

I

) e

o Mutation testing framework
STRYKE® _ for 1S/TS, C#, Scala, ketHn

8 iLL THEMUTANTS

S

stryker-mutator.io

"In the next 25 minutes

*Why we need to understand our tests
What mutation testing is

How mutation testing got to practical applicability

"In the next 25 minutes

Why we need to understand our tests
» What mutation testing is

How mutation testing got to practical applicability

"In the next 25 minutes

Why we need to understand our tests
What mutation testing is

» How mutation testing got to practical applicability

"In the next 25 minutes

Why we need to understand our tests
What mutation testing is

» How mutation testing got to practical applicability

» State-of-art performance improvements

B e
b b b bbb i b

B
A Talse sense of security

lity Gate 7
Higlvee 1 New Code Overall Code

v
Passed New Code: since about 1 month ago
¥* Reliability & Maintainability
A A
O Bugs ? O Code Smells ?
6 Security @ Security Review
A A
O Vulnerabilities # O Security Hotspots 7
Coverage Duplications
76% Coverage ? " , 0.0% Duplications 2 -
On 21k New Lines to cover On 46k New Lines

Source: https://www.sonarsource.com/products/sonarqube/ (2024-01-28)

https://www.sonarsource.com/products/sonarqube/

Coverage only
means that code is

executed

We can have high code coverage
without asserting anything!

HIIII'S TESTING THE | TESTS?

PELE
JJJJJJJJJ

4
11111111111
FrrYFFFFrFFrEry
44444

EEy

Testing the tesis

“Mutation testing

Introducing changes in production code,
then checking whether the test suite fails to detect those changes

* White-box testing

NN

4 1 9 7 9 - A t p f Acree, Allen & Budd, Timothy & Demillo, Richard & Lipton, Rich <
m n ew y e O Sayward, Fred. (1979). MutaWig-"' K “-_.V.‘ '

software test - owe ol
Lo, o
Mutation Analynis ‘s |
Riere s Lipon Caiiibe® B B

Computer Science Division Lo it |
University of California, .

Berkeley, CA 94720 '. '.
{ AR

R - e

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

et e] o el e m

— e

Frederick C. Sayward

Computer Science Department
Yale University
New Haven, CT 08520

ABSTRACT 1

""Recent" popularity

CREST CENTRE, KING'S COLLEGE LONDON. TR-04-(6]
35
Theoretical Work EZ==
a0 J Practical Work mosesa
g 25 . I
=]
8 20 1
=]
3
gl [Y IR STTTTS NE— W .
©
2 T :
o f :
o LBl B g Ba -
0

Fr7879808182838485868788899091929394959697989900010203 0405
Year

Fig. 3. Theoretical Publications ¥ 5. Practical Publications

Y. lia and M. Harman, "An Analysis and Survey of the Development of Mutation Testing," in IEEE Transactions on Software Engineering, vol.
37, n0. 5, pp. 649-678, Sept.-Oct. 2011, DOI: 10.1109/TSE.2010.62.

" Mutation testing process

1. Source code

A
JJJJJJJ
JJJJJJ

" Mutation testing process

1. Source code
2. Mutant

Frrrrr
JJJJJJ

" Mutation testing process

1. Source code

2. Mutant
4. Killed / survived

" Mutation testing process
© 0 . UX il

1. Source code

2. Mutant

S. Killed /7 survived
4. Report

JJJJJJJ

“Mutation operators

Transform operations in source code to one or more mutated versions
of that source code

d Common mutations

Original Mutated
a+b a->b
a/b a x b
a<b a>b
a==>b al'l=»b

a & b a || b
"Cola" !

[1, 2, 3, 4] []
a>>b true

{ ...} {}

NN

" Mutant states

- M Killed
» 89 Survived

NN

" Mutant states

M Killed
% Survived
» % No coverage
> I Timeout
» 3 Runtime
» 3¢ Compile

NN

" Mutant states

Killed
% Survived
* % No coverage — no tests are reaching the code
> I Timeout — mutation caused an infinite loop
» 3% Runtime — mutation caused an exception
3% Compile — mutation resulted in invalid code

NN

" Mutant states

¥ Killed

% Survived

+ ¥ No coverage — no tests are reaching the code
» I Timeout — mutation caused an infinite loop

3% Runtime — mutation caused an exception

3 Compile — mutation resulted in invalid code

= & Ignored

NN

" Mutation score

Is the code tested adequately?

M = set of mutants {m,...,m,}
B M@+ Mz
- Mg+ Mz + Me + Mg

x 100%

mutationScore(M)

" Mutation score

Is the code fthat is tested being tested adequately?

M = set of mutants {m,...,m,}
Mg+ Mz
M@+ Mz + Me

coveredMutationScore(M) x 100%

=1J"

Not all mutants can be killed

While it is easy to reach all your code, it is not possible to write a test
case for every possible internal change of your program

- -
JJJJJJJJJ

A a il all all
44444444444

JJJJJJJ il il
PrFFFFFFFFFFF| 18
rrErrFErrrrrr)

" Equivalent mutants

1 function calculateInLoop() {

2 var value = 0;

3 for (1 = 0; 1 < 10; i++) {
4 value += 1;

5 }

6 return value

7}

1 expect(calculateInLoop).to.equal(45); /x & Passes x/

r
ol

4 A

Aad .
ddddddddddad

bbb bbb

" Equivalent mutants

3 for (1 =0; i < 10; i++) {

1 expect(calculateInLoop).to.equal(45); /x & Passes x/

r
ol

bbb bbb

" Equivalent mutants

3 for (i =0: i != /% @ x/ 10; i++) { /* X Survived */

1 expect(calculateInLoop).to.equal(45); /x & Passes x/

="

Mutation testing is challenging

» & Takes a /ot of time

. &KL . : .

+ ¢ Requires configuration

> @ Requires tooling support

For a long time, mutation testing was simply not feasible and/or not
easy

- -
JJJJJJJJJ

A a il all all
44444444444

JJJJJJJJ il il
PFFFFFFFFFFFF| 21
il il FrEFFrFE|

EEy

Bridging the gap

" Performance

For every mutation we run the whole test suite once.

NN

" Performance

For every mutation we run the whole test suite once.

We need to be smarter: ty; < |T| x |M]|!

NN

23.1

" Performance

Three approaches to improving performance

* «a Do faster
- @ Do fewer

» & Do smarter

A. Pizzoleto, F. Ferrari, 1. Offutt, L. Fernandes, and M. Ribeiro, “A systematic literature review of techniques and metrics to reduce the cost of
mutation testing,” Journal of Systems and Software, vol. 157, lul. 2019. DOI: 10.1016/j.jss.2019.07.100.

A

" Performance

Three approaches to improving performance

* «& Do faster: 27 studies
- @ Do fewer: 118 studies
» & Do smarter: 75 studies

A. Pizzoleto, F. Ferrari, 1. Offutt, L. Fernandes, and M. Ribeiro, “A systematic literature review of techniques and metrics to reduce the cost of
mutation testing,” Journal of Systems and Software, vol. 157, lul. 2019. DOI: 10.1016/j.jss.2019.07.100.

W

" Common techniques

> @ Random mutation

= & Higher order mutation

» « Parallel execution

> @ Data-flow analysis

> @ Control-flow analysis

» & Minimization and
prioritization of test sets

> @ Constrained mutation

» & Evolutionary algorithms
» & Model-based mutation
» & State-based analysis

> @ Minimal mutation

» @ Selective mutation

“Mutation strategies

Placing mutations into source code

y:

d Source code mutation Byte code mutation

Source code ———p| Compile ———p Byte code
- S e

> Precise Fast...ish
> Easy X False positives
= X Slow X Complicated

Source code mutation d Byte code mutation

¢ ——p Source code ——pp Compile ——p Machine code ——p/ Run tests

4% ——p Source code ——p Compile ——p Machine code ——p Run tests

¥ Precise » W8 Fast...ish
¥ Easy > X False positives
X Slow * K Complicated

27.1

d Mutant schemata

Generate mutants based on source code, but compile once

/‘F{ Run tests on & ’

Machine code]

\F[Run tests on &]

* W4 Precise
» W Fast
> () Complicated (but manageable)

Roland H. Untch, A. lefferson Offutt, and Mary lean Harrold. 1993. Mutation analysis using mutant schemata. SIGSOFT Softw. Eng. Notes
18, 3 (July 1993), 139-148. DOI: 10.1145/174146.154265.

NN

" Coverage analysis

Test coverage: which code is hit by which tests

0Only run tests that cover a mutation instead of the whole test suite

A

" Incremental analysis

Re-use results from a previous run

Only analyze changes from previous run

" Mutation levels

Selective mutation approach by Info Support's lan Smits

» User choice depending on requirements

* Type of project / domain
Pull request / nightly build

A
|
|
b
Bl b
bbb bbb

" Mutation levels

Selective mutation approach by Info Support's lan Smits

» User choice depending on requirements

* Type of project / domain
Pull request / nightly build

Mutation score not necessarily comparable!

A

A

FFFF

FFF

FIFFF

FFFFF

FrFr
A d
A dd

FFFFFrr

FFFFFFFr

JJJJJJJJ

dddddddddd

bbb b i b hilhihih

" Mutation levels: Callisto

Mutation Level Name % Mutants Removed | Effectiveness () | Performance (Pr)
<1%testsexecuted 88% 26% 83%
Custom1 57% 69% 49%
Custom2 74% 48% 71%
Custom3 81% 37% 75%
. . . Custom4 86% 28% 80%
Full run of mutation testing as
. Only4WorstPerforming 47% 85% 52%
| n p u t OnlyBlockStatement 78% 63% 86%
OnlyStringEmpty 83% 37% 85%
::' F I n d S b al a n C e b e tW e e n Remove4WorstPerforming 46% 76% 32%
RemoveStringEmpty 17% 92% 15%
accuracy and number of test
Threshold 0.65 50% 74% 39%
e X e C u 'l: I O n S Threshold 0.70 66% 63% 60%
Threshold 0.75 70% 57% 65%
Threshold 0.80 87% 36% 80%
Threshold 0.85 96% 13% 96%

Table 6.1: The % of mutants removed, effectiveness and performance for all mutation levels.
Results were obtained using Callisto.

Smits, 1. P. G. (2022). Callisto-Selecting Effective Mutation Operators for Mutation Testing (Master's thesis, University of Twente). Summary
@ research.infosupport.com, Thesis @ utwente.nl.

https://research.infosupport.com/publications/callisto-selecting-effective-mutation-operators-for-mutation-testing/
https://research.infosupport.com/publications/callisto-selecting-effective-mutation-operators-for-mutation-testing/
https://essay.utwente.nl/89294/

“Mutation levels: project Xavier

Mutation levels implementation in Stryker 1S

* Hot off the press: implementation done, pull request #4686 open

NN

https://github.com/stryker-mutator/stryker-js/pull/4686

“Mutation levels: project Xavier

Mutation levels implementation in Stryker 1S

NN

* Hot off the press: implementation done, pull request #4686 open

Implemented by a project group of CS master students from the
University of Twente

33.1

https://github.com/stryker-mutator/stryker-js/pull/4686

“Mutation levels: project Xavier

Mutation levels implementation in Stryker 1S

NN

* Hot off the press: implementation done, pull request #4686 open

Implemented by a project group of CS master students from the
University of Twente

* Documentation to follow...

33.2

https://github.com/stryker-mutator/stryker-js/pull/4686

"Further reducing test runs

Analyze multiple mutants per test run

* Minimal number of test runs
* Combine mutants that do not influence each other
* No negative effects on accuracy

"Further reducing test runs

Analyze multiple mutants per test run

* Minimal number of test runs
* Combine mutants that do not influence each other
* No negative effects on accuracy

Current graduation project of CS master student at Info Support

Hh
Time to test your tests!

"In general

A lot of progress in 45 years

Better hardware
Lots of process improvements

"In general

A lot of progress in 45 years

Better hardware

Lots of process improvements
We have production-ready tooling

Integrates with build tool

Uses information already provided by your tests
Ability to run on CI pipeline

y

d Mutation testing for your language of choice

More options available: hitps://github.com/theofidry/awesome-mutation-testing (or search

${lang} mutation testing)

Language Framework
lavaScript & TypeScript StrykerldS
Scala Stryker4s
C# Stryker.NET
lava PIT

PHP InfectionPHP
Ruby Mutant
Python Cosmic Ray
C/C++ Mull

Go Gremlins
Swift Muter

FFEFFrFrr
dadddddddddad

bbb bbb

https://github.com/theofidry/awesome-mutation-testing

="

"Conclusion

» Mutation testing is testing the tests
Don't rely on code coverage, use mutation score to check
assertions
A lot of research in performance improvements

Still open research questions

Applicable now

38

A.:i al ‘J 4l
4444444444444

="

Conclusion

Mutation testing is testing the tests
»* Don't rely on code coverage, use mutation score to check

assertions
A lot of research in performance improvements

Still open research questions

Applicable now

44
prerrrrrrrr

FFFFFI ‘J il all 38-1
Prrrrrrrrrrrrer|

bbb
=

="

Conclusion

Mutation testing is testing the tests
Don't rely on code coverage, use mutation score to check
assertions

» A lot of research in performance improvements

» Still open research questions

Applicable now

38.2

A:: al ‘J il
Prrrrrrrrrrrrer|

="

"Conclusion

Mutation testing is testing the tests

Don't rely on code coverage, use mutation score to check
assertions

A lot of research in performance improvements

Still open research questions

* Applicable now

38.3

A.:i al ‘J 4l
4444444444444

" Get started with StrykerlS

Who's testing the tests? Mutation testing with

StrykerlS

Saturday, 18:30-19:00
lavascript devroom, H.1301 (Cornil)

* Watch back the slides and/or video online

https://fosdem.org/2024/schedule/event/fosdem-2024-1683-who-s-testing-the-tests-mutation-testing-with-strykerjs/

_[nfofupport »

Solid Innovator

Jdan-lelle Kester

Software Engineering Consultant
Trainer
Research Supervisor

) jjkester
1 jjkester

research.infosupport.com

