FOSDEM 2024

Challenges of supporting
multiple versions of LLVM in IGC

Mateusz Belicki

intel.



purpose of this talk:

* share experience of working on a downstream

compilerusing LLVM as ,optimization framework”

» describe engineering choices and their results
» provide some insight into how LLVM is used
» gather comments from other maintainers

FOSDEM 2024

intel.

2



what is |GC

and its relationship with LLVM

FOSDEM 2024

intel.

3



whatis |GC

» |GC stands for Intel Graphics Compiler:
 a SPMD compiler for all Intel GPU targets;
= supporting both compute (OpenCL, SYCL) and graphics API (DX,
Vulkan, etc.).
= part of the userspace graphics driver:
= library rather than a standalone executable;
= transforms kernel/shader ,bytecode” (e.g. SPIR-V) into final binary.

FOSDEM 2024

intel.

4



how IGC uses LLVM

= we take LLVM’s pass manager and populate it with both custom
|GC passes and generic LLVM transforms;

* LLVM codegen infrastructre is not currently used:
* custom pass-based emitter
= perfroms vectorization and lowering to another IR called VISA

FOSDEM 2024

intel.

5



how IGC uses LLVM

 all custom parts created using LLVM's C++ AP

* why notuse C API:
= stable but limited;
= allows building IR but does not help with transforms;
» designed for frontends;
» |GC defines it’'s own passes, needs all APIs that LLVM provides;

FOSDEM 2024

intel.

6



|IGC — open source model

= distribution:

= both closed source and open source releases;

= sources and binary releases can be accessed on github:
https://qgithub.com/intel/intel-graphics-compiler

= part of some GNU/Linux distros:
= Arch, Ubuntu, Debian, etc.

= development:
= (sadly) closed-source first
= open source repository mirrors closed source repo

= patches are auto-generated from closed source repo with sensitive parts
removed

= both reposin sync, open repository gets changes at the same time as closed
one

FOSDEM 2024

intel.

7


https://github.com/intel/intel-graphics-compiler

|IGC — supported LLVM versions

» closed source Windows compiler stillon LLVM9 due to
performance reasons:
* LLVM upgrades bring both performance improvements and regressions

* regressions usually can be addressed by changes on the IGC side, but
require some effort

= open source GNU/Linux compiler currently on LLVM14 but
supports older versions too:
» preassure to keep up with LLVM version coming from OS distro;
» some flexibility needed to support multiple OS and their LLVM versions;

FOSDEM 2024 intel.



supporting LLVM versions from 9 to 15

with the same codebase

FOSDEM 2024 intel. ¢



supporting multiple LLLVM versions — key issues:

1. changesin optimizations perfromed by generic LLVM passes:
= can cause both performance improvements and regressions
 sometimes passes start to emit IR unsupported by the backend
» single most problematic pass: InstructionCombiner

» those cases can ususally be addressed by transforming IR on our side
before/after generic otimization pass

2. APl changes:

* more in following slides

FOSDEM 2024

intel.

10



LLVM wrapper — a way to address APl changes

* L LVMversion 9 to 15 changes are mostly APl-level:

* roughly the same things are possible, but either with different call or set
of multiple calls

" new types appearing in new versions (e.g. scalable vectors) can be
mocked or implemented using previously avaialble

» can be handled with a wrapper layer:

» gathers #ifdefs in a single place, so they are way easier to mantain

= convention for wrapper functionsis to be as close to new version of API
as possible, this way when the support for older version is dropped the
wrapper can be easily removed

FOSDEM 2024 intel. 7



LLVM wrapper

= https://github.com/intel/intel-graphics-
compiler/tree/master/IGC/WrapperLLVM

* headers only

* mostly mirrors LLVM header structure

* each wrapper function maps to a function from highest currently
supported LLVM versionis placed in an analogous header

FOSDEM 2024 intel. 12


https://github.com/intel/intel-graphics-compiler/tree/master/IGC/WrapperLLVM
https://github.com/intel/intel-graphics-compiler/tree/master/IGC/WrapperLLVM

LLVM wrapper

* most cases are fairly simple:

inline llvm::Attribute getWithStructRetType
(1lvm::LLVMContext &Context, 1llvm::Type *Ty) {

#if LLVM _VERSION MAJOR <= 11
return llvm::Attribute::get(Context, llvm::Attribute::StructRet);

#else
return llvm::Attribute: :getWithStructRetType(Context, Ty);

#endif
}

FOSDEM 2024 intel. 1



LLVM wrapper

* for some of them a whole implementation is needed:

inline llvm::Constant *getSplatValue(llvm::ConstantVector *CV,
bool AllowUndefs = false) {
#if LLVM_VERSION MAJOR < 10
if (!'AllowUndefs)
CV->getSplatValue();
llvm::Constant *Elt = CV->getOperand(9);
for (unsigned I = 1, E = CV->getNumOperands(); I < E; ++I) {
1llvm::Constant *OpC = CV->getOperand(I);
if (1lvm::isa<1llvm::UndefValue>(0pC))
continue;
if (1lvm::isa<1llvm::UndefValue>(Elt))
Elt = OpC;
if (OpC != E1lt)
return nullptr;
}
return E1t;
#else
return CV->getSplatValue(AllowUndefs);
#endif

}
FOSDEM 2024 intel. 4



LLVM wrapper

* this can happen for whole classes:

namespace IGCLLVM {
#if LLVM_VERSION_MAJOR < 11
class AddrSpaceCastOperator
: public 1llvm::ConcreteOperator<llvm::Operator, llvm::Instruction::AddrSpaceCast> {
friend class llvm::AddrSpaceCastInst;
friend class llvm::ConstantExpr;

public:
1lvm::Value *getPointerOperand() { return getOperand(@); }

const llvm::Value *getPointerOperand() const { return getOperand(9); }

unsigned getSrcAddressSpace() const {
return getPointerOperand()->getType()->getPointerAddressSpace();
}

unsigned getDestAddressSpace() const {
return getType()->getPointerAddressSpace();
}
¥
#else
using llvm::AddrSpaceCastOperator;
#endif
} // namespace IGCLLVM }

FOSDEM 2024

intel.

15



LLVM wrapper

* but sometimes just a type alias is needed:

namespace IGCLLVM

{
#if LLVM_VERSION_MAJOR <= 10

using llvm::CallSite;
using CallSiteRef = IGCLLVM::CallSite;

#else
using CallSite = llvm::CallBase;
using CallSiteRef = IGCLLVM::CallSiteg&;

#endif
}

FOSDEM 2024 intel.



LLVM wrapper

» 52 headers currently including 224 wrapper functions and 32
type aliases

ADT 7 15
Analysis 3 3
CodeGen O 1
IR 15 162
MC | 5
Option O 2
Support 3 24
Target 1 3
Transforms 2 9

FOSDEM 2024 intel.



supportl

and how we

FOSDEM 2024

Nng future L

olan to deal with o

VM versions

naque

nointers

intel.

18



opague pointers

* L LVMI14 introduces opaque pointers mode, with LLVMI16 they
are mandatory:

define i8* @test(i8* %p) { define ptr @test(ptr %p) {
%p2 = getelementptr 18, i8* %p, 164 %p2 = getelementptr 18, ptr %p, 164 1
ret i8%* %p2 ret ptr %p2

} }

FOSDEM 2024 intel.



opague pointers

» we unfortunately happen to rely heavily on the pointee type
information:
= for GPU targets we have types that are just passed around as pointers,
e.g. samplers, textures etc.

= presence of given type can alter code generation (e.g. implicit kernel
arguments, different instructions), so we have to know exactly what is

the pointee type in some cases

%spirv.Sampler = type opaque

FOSDEM 2024 intel.

20



opague pointers

* Thischange cannot be handled by the wrapper alone:
= cannot deduce the pointee type from opaque pointer (at least not always
and not without no runtime cost)
* Fortunately there is already a mechanism in LLVMI16 that can
help with this issues:

= Target-extension types represent types that need to be preserved
through optimization, but otherwise are not introspectable by target-
independent optimizations.”

= %val = alloca target("spirv.DeviceEvent")

FOSDEM 2024 intel. 2



opaqgue pointers

» staged plan to move to opaque pointers:

1. remove all places that use pointee type information, but either don’t
need it or can get it from elsewhere (e.g. instruction that uses the
pointer);

= basically this: https://llvm.org/docs/OpaquePointers.html#migration-instructions
move to LLVMI4, dropping support for older versions

Internall apply TET patch:

= patch for TET available only in LLVMI16

= the patch fortunatelly isrelatively easy to portto LLVMI14

4. update all places that use pointee type informationtouse TET:
= thisallows ustoworkon TET support before upgrading to LLVMI16

5. moveto LLVMI6, dropping support for older versions

SEN

FOSDEM 2024 intel. 22


https://llvm.org/docs/OpaquePointers.html#migration-instructions

conclusions

FOSDEM 2024

intel.

23



conclusions

1. multiple versions of LLVM can be supported at the same time
with some care;

2. evenlong streaches (9 —15) are possible between versions that
introduce small APl changes;

3. however, thereis arisk of fundamental upstream changes

(opague pointers), that may force abandoning support for older
Versions.

FOSDEM 2024 intel. 24






target extension types

define target("spirv.DeviceEvent") @basic_alloc
(target("spirv.DeviceEvent") %arg) {
%val = alloca target("spirv.DeviceEvent")
store target("spirv.DeviceEvent") %arg, ptr %val

%ret = load target("spirv.DeviceEvent"), ptr %val
ret target("spirv.DeviceEvent") %ret

FOSDEM 2024 intel. 26



	Slide 1: Challenges of supporting multiple versions of LLVM in IGC
	Slide 2: purpose of this talk:
	Slide 3: what is IGC
	Slide 4: what is IGC
	Slide 5: how IGC uses LLVM
	Slide 6: how IGC uses LLVM
	Slide 7: IGC – open source model
	Slide 8: IGC – supported LLVM versions
	Slide 9: supporting LLVM versions from 9 to 15
	Slide 10: supporting multiple LLVM versions – key issues:
	Slide 11: LLVM wrapper – a way to address API changes
	Slide 12: LLVM wrapper
	Slide 13: LLVM wrapper
	Slide 14: LLVM wrapper
	Slide 15: LLVM wrapper
	Slide 16: LLVM wrapper
	Slide 17: LLVM wrapper
	Slide 18: supporting future LLVM versions
	Slide 19: opaque pointers
	Slide 20: opaque pointers
	Slide 21: opaque pointers
	Slide 22: opaque pointers
	Slide 23: conclusions
	Slide 24: conclusions
	Slide 25
	Slide 26: target extension types

