SemVer in Rust:
breakage, tooling, and edge cases

Predrag Gruevski

@ https://predr.ag/ @ @predrag@hachyderm.io) PredragGruevski () obilkenobi

SemvérChecks

Predrag Gruevski

@ https://predr.ag/ @ @predrag@hachyderm.io) PredragGruevski () obilkenobi

SemVer is communication

Weekly cargo update of dependencies #6064/
3 github-actions merged 1 commit into main from cargo_update LC' 2 days ago

obilkenobi commented 2 days ago Owner *e°

Automation to keep dependencies in cargo.lock current.

The following is the output from cargo update :

Updating anstream v0.6.7 -> v0.6.11 [EJ
Updating async-compression v0.4.5 -> v0.4.6
Updating bitflags v2.4.1 -> v2.4.2

Updating clap v4.4.16 -> v4.4.18

Updating clap-verbosity-flag v2.1.1 -> v2.1.2
Updating clap_builder v4.4.16 -> v4.4.18
Updating gix-config-value v0.14.3 -> v0.14.4
Updating gix-path v0.10.3 -> v0.10.4
Updating gix-sec v0.10.3 -> v0.10.4

Updating gix-trace v0.1.6 -> v0.1.7

Updating gix-utils v©.1.8 -> v@.1.9

Updating h2 v@.3.23 -> v0.3.24

Updating hermit-abi v0.3.3 -> v@.3.4
Updating libz-ng-sys v1.1.14 -> v1.1.15
Updating linux-raw-sys v0.4.12 -> v0.4.13
Updating predicates v3.0.4 -> v3.1.0
Updating proc-macro2 v1.0.76 -> v1.0.78
Updating rayon v1.8.0 -> v1.8.1

Updating rayon-core v1.12.0 -> v1.12.1
Updating regex v1.10.2 -> v1.10.3

Updating regex-automata v0.4.3 -> v0.4.4
Updating smallvec v1.12.0 -> v1.13.1
Updating smol str v@.2.0 -> v0.2.1

Updating unicode-bidi v@.3.14 -> v0.3.15
Updating uuid v1.6.1 -> v1.7.0

O~ cargo update - v/ d6d5a51

SemVer is so hard,
no mere mortals can uphold it.

SemVer is so hard,
no mere mortals can uphold it. ¢

Computers are no mere mortals.
They are really good at SemVer.

SemVer is so hard,
no mere mortals can uphold it.

Computers are no mere mortals.
They are really good at SemVer.

Here's how hard
SemVer is in Rust

Falsehoods we believed about SemVer

Falsehoods we believed about SemVer

ﬂ

e Crates always adhere to SemVer

Version 0.5.1 breaks SemVer guarantees #7285

@Yl jonasbb opened this issue on Nov 25, 2018 - 5 comments

Version 0.5.1 breaks SemVer guarantees #7285

@Yl jonasbb opened this issue on Nov 25, 2018 - 5 comments

Backwards incompatibility for ArgMatches and UnwindSafe #3876
O 2 tasks done ' doivosevic opened this issue on Jun 27, 2022 - 7 comments

Version 0.5.1 breaks SemVer guarantees #7285

@Yl jonasbb opened this issue on Nov 25, 2018 - 5 comments

Backwards incompatibility for ArgMatches and UnwindSafe #3876
O 2 tasks done ' doivosevic opened this issue on Jun 27, 2022 - 7 comments

SemVer breaking change caused by mio upgrade to 0.8 #4571/
ecton opened this issue on Feb 17, 2022 - 3 comments

Version 0.5.1 breaks SemVer guarantees #7285

@Yl jonasbb opened this issue on Nov 25, 2018 - 5 comments

Backwards incompatibility for ArgMatches and UnwindSafe #3876
O 2 tasks done ' doivosevic opened this issue on Jun 27, 2022 - 7 comments

SemVer breaking change caused by mio upgrade to 0.8 #4571/
ecton opened this issue on Feb 17, 2022 - 3 comments

Semver violation in 0.18.12 — please re-export
git2 since it's part of public APl #97

@Y obilkenobi opened this issue on Jan 23 - 2 comments

Version 0.5.1 breaks SemVer guarantees #7285

@Y jonasbb opened this issue on Nov 25, 2018 - 5 comments

Backwards incompatibility for ArgMatches and UnwindSafe #3876
O 2 tasks done doivosevic opened this issue on Jun 27, 2022 - 7 comments

tracing 0.1.38 included accidentally-breaking change
from added Drop impl #2578

Jjonhoo opened this issue on Apr 28 - 19 comments

Semver violation in 0.18.12 — please re-export
git2 since it's part of public APl #97

O obilkenobi opened this issue on Jan 23 - 2 comments

Version 0.5.1 breaks SemVer guarantees #7285

@B jonasbb opened this issue on Nov 25, 2018 - 5 comments

Backwards incompatibility for ArgMatches and UnwindSafe #3876
O 2 tasks done doivosevic opened this issue on Jun 27, 2022 - 7 comments

tracing 0.1.38 included|accidentally-breaking|change
from added Drop impl #2578
Jjonhoo opened this issue on Apr 28 - 19 comments *

Semver violation in 0.18.12 — please re-export
git2 since it's part of public APl #97

O obilkenobi opened this issue on Jan 23 - 2 comments

Version 0.5.1 breaks SemVer guarantees #7285

@Y jonasbb opened this issue on Nov 25, 2018 - 5 comments

Backwards incompatibility for ArgMatches and UnwindSafe #3876
O 2 tasks done doivosevic opened this issue on Jun 27, 2022 - 7 comments

tracing 0.1.38 included accidentally-breaking change
from added Drop impl #2578

Jjonhoo opened this issue on Apr 28 - 19 comments

Semver violation in 0.18.12 — please re-export
git2 since it's part of public APl #97

O obilkenobi opened this issue on Jan 23 - 2 comments

Version 0.5.1 breaks SemVer guarantees #7285

@Yl jonasbb opened this issue on Nov 25, 2018 - 5 comments

Backwards incompatibility for ArgMatches and UnwindSafe #3876
O 2 tasks done doivosevic opened this issue on Jun 27, 2022 - 7 comments

tracing 0.1.38 included accidentally-breaking change
from added Drop impl #2578

Jjonhoo opened this issue on Apr 28 - 19 comments

Semver violation in 0.18.12 — please re-exp~
git2 since it's part of public APl #97

@Yl obilkenobi opened this issue on Jan 23 - 2 comments

Weekly cargo update of dependencies #6472
: github-actions merged 1 commit into main from cargg

obilkenobi commented 2 days 2 Owner *s*

Automation to keep deg

The following is thg

er v4.4.16 ->
b-value v0.14.3
0.10.3 -> vo.10.4
.10.3 -> vO.10.4
vo.1.6 -> vO.1.7
ve.1.8 -> v0.1.9
-> v0.3.24
vo.3.3 -> vO.3.4
1.1.14 <> vi1.1.15
ve.4.12 -> v0.4.13
4 -> v3.1.9
Updati 6 -> v1.0.78
Updating R. 1
Updating

Updating
Updating
Updating
Updating
unicode-bidi
Updating uuid v1.6.1 -> vIt

Updating

O~ cargo update - v/ déd5a

tracing 0.1.38 included accidentally-breaking change from added Drop impl #2578

jonhoo opened this issue on Apr 28, 2023 - 19 comments

B A@jasl mentioned this issue on Apr 29, 2023

Revert “"Bump tracing from 0.1.37 to 0.1.38" paritytech/cargo-contract#1096 $= Merged

2 ™ foooooooooooo000 mentioned this issue on Apr 29, 2023
Can't build 0.23.0 cargo-bins/cargo-binstall#1019
[y e 71 mentioned this issue on Apr 30, 2023
cargo: downgrade tracing from yanked 0.1.38 to 0.1.37 martinvonz/jj#1563
E‘, 4 tasks

G2 s JamesHinshelwood mentioned this issue on May 1, 2023

Revert tracing from 0.1.38 back to 0.1.37 Zilliga/zq2#119 $~ Merged

2 ’ rillian mentioned this issue on May 2, 2023

Downgrade yanked tracing 0.1.38 to 0.1.37 brave/star-randsrv#83 $~ Merged

2 % ilslv mentioned this issue on May 4, 2023

Consider entering Span on Drop for Instrumented #2541 © Open

L2 wizard-28 added a commit to pacstall/pacbot that referenced this issue on May 6, 2023

& byild(tracing): ©.1.38 -> 0.1.37 - Verified | v c8fa820

4 e; Turbo87 mentioned this issue on May 10, 2023

Revert "Update Rust crate tracing to v0.1.38 (#6387)" rust-lang/crates.io#6458 $~ Merged

4 e zecakeh mentioned this issue on May 10, 2023

Downgrade tracing to 0.1.37 matrix-org/matrix-authentication-service#1178 $~ Merged

SemVer violations are
miscommunication

Falsehoods we believed about SemVer

Falsehoods we believed about SemVer

ﬂ

e Careful coding is enough to avoid violating SemVer

1in 6 of the top 1000 crates
have broken SemVer at least once

Joint work with Tomasz Nowak, Mieszko Grodzicki, Bartosz Smolarczyk, Michat Staniewski
https://predr.ag/blog/semver-violations-are-common-better-tooling-is-the-answer/

https://predr.ag/blog/semver-violations-are-common-better-tooling-is-the-answer/

1in 6 of the top 1000 crates
have broken SemVer at least once

SemverChecks

Joint work with Tomasz Nowak, Mieszko Grodzicki, Bartosz Smolarczyk, Michat Staniewski
https://predr.ag/blog/semver-violations-are-common-better-tooling-is-the-answer/

https://predr.ag/blog/semver-violations-are-common-better-tooling-is-the-answer/

1in 6 of the({top 1000 crates

have broken SemVer at least once
SemverChecks

Joint work with Tomasz Nowak, Mieszko Grodzicki, Bartosz Smolarczyk, Michat Staniewski
https://predr.ag/blog/semver-violations-are-common-better-tooling-is-the-answer/

https://predr.ag/blog/semver-violations-are-common-better-tooling-is-the-answer/

>3% of the 14000 scanned releases
had at least one SemVer violation

SemverChecks

Joint work with Tomasz Nowak, Mieszko Grodzicki, Bartosz Smolarczyk, Michat Staniewski
https://predr.ag/blog/semver-violations-are-common-better-tooling-is-the-answer/

https://predr.ag/blog/semver-violations-are-common-better-tooling-is-the-answer/

Weekly cargo update of dependencies #6047

github-actions merged 1 commit into main from cargo_update LQ 2 days ago

f~ Merged

Owner eoe

obilkenobi commented 2 days ago

Automation to keep dependencies in cargo.lock current.

The following is the output from cargo update :

Updating
Updating
Updating
Updating
Updating
Updating
Updating
Updating
Updating
Updating
Updating
Updating
Updating
Updating
Updating
Updating
Updating
Updating
Updating
Updating
Updating
Updating
Updating
Updating
Updating

cargo update

anstream v0.6.7 -> v0.6.11
async-compression v0.4.5 -> v0.4.6
bitflags v2.4.1 -> v2.4.2

clap v4.4.16 -> v4.4.18
clap-verbosity-flag v2.1.1 -> v2.1.2
clap builder v4.4.16 -> v4.4.18
gix-config-value v0.14.3 -> v0.14.4
gix-path ve0.10.3 -> v0.10.4
gix-sec v0.10.3 -> v0.10.4
gix-trace v0.1.6 -> vO.1.7
gix-utils v0.1.8 -> v0@.1.9

h2 v0.3.23 -> v0.3.24

hermit-abi v0.3.3 -> v0.3.4
libz-ng-sys v1.1.14 -> v1.1.15
linux-raw-sys ve0.4.12 -> v0.4.13
predicates v3.0.4 -> v3.1.0
proc-macro2 v1.0.76 -> v1.0.78
rayon v1.8.0 -> v1.8.1

rayon-core v1.12.0 -> v1.12.1
regex v1.10.2 -5 v1.10.3
regex-automata ve0.4.3 -> v0.4.4
smallvec v1.12.0 -> v1.13.1

smol str v@.2.0 -> v0.2.1
unicode-bidi v0.3.14 -> v0.3.15
uuid v1.6.1 -> v1.7.0

Statistically, there’s
a semver violation
somewhere in here...

v/ déd5a51

Falsehoods we believed about SemVer

Falsehoods we believed about SemVer

ﬂ

- - -
\J A YV U o V \J @

e Breaking changes always require major versions

TJJ. F master v rfcs/ text / 1105-api-evolution.md 1 Top

[Preview] Code Blame Raw @ & 7~

Detailed design

For clarity, in the rest of the RFC, we will use the following terms:

¢ Major change: a change that requires a major semver bump.
e Minor change: a change that requires only a minor semver bump.

e Breaking change: a change that, strictly speaking, can cause downstream code to fail to compile.

What we will see is that in Rust today, almost any change is technically a breaking change. For

example, given the way that globs currently work, adding any public item to a library can break its
clients (more on that later). But not all breaking changes are equal.

So, this RFC proposes that all major changes are breaking, but not all breaking changes are major.

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

What we will see is that in Rust today, almost any change is technically a breaking change.jFor

example, given the way that globs currently work, adding any public item to a library can break its

clients (more on that later). But not all breaking changes are equal.

So, this RFC proposes that all major changes are breaking, but not all breaking changes are major.

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

What we will see is that in Rust today, almost any change is technically a breaking change.jFor

example, given the way that globs currently work, adding any public item to a library can break its

clients (more on that later). But not all breaking changes are equal.

So, this RFC proposes that all major changes are breaking, but not all breaking changes are major.

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

So, this RFC proposes that all major changes are breaking, but not all breaking changes are major.

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

So, this RFC proposes tha

K Adding new items to a module \

all major changes are breaking, but not all breaking changes are major.

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

K Adding new items to a module \

e Changes that break type inference
(requiring type annotations in downstream code)

all major changes are breaking, but not all breaking changes are major.

So, this RFC proposes tha

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

K Adding new items to a module \

e Changes that break type inference
(requiring type annotations in downstream code)

e Reverting accidental APl changes

N N

all major changes are breaking, but not all breaking changes are major.

So, this RFC proposes tha

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

So, this RFC proposes tha

K Adding new items to a module \

e (Changes that break type inference
(requiring type annotations in downstream code)

e Reverting accidental APl changes

e Critical soundness or security fixes,
k subject to the maintainer’s judgment call /

all major changes are breaking, but not all breaking changes are major.

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

https://github.com/rust-lang/rfcs/blob/master/text/1105-api-evolution.md

Falsehoods we believed about SemVer

SemVer's rules are complex!

SemVer's rules are complex!
Automation can help!

SemVer is so hard,
no mere mortals can uphold it.

Computers are no mere mortals.
¢ ¢ They are really good at SemVer.

SemVer is so hard,
no mere mortals can uphold it.

Computers are no mere mortals.
¢ ¢ They are really good at SemVer.

s N

They are best where we

do poorly, and vice versa.
- y,

SemverChecks

N

ﬂ

SemverChecks

cargo semver-checks && cargo publish

N

ﬂ

SemverChecks

cargo semver-checks && cargo publish

e

Detects the version bump,
then scans for APl changes
inappropriate for that bump.

_ J

N

ﬂ

SemverChecks

cargo semver-checks && cargo publish

cargo install cargo-semver-checks --locked

crates.io v0.3.42 CI passing

Release-plz helps you release your Rust packages by automating:

« CHANGELOG generation (with git-cliff).

« Creation of GitHub/Gitea releases.

« Publishing to a cargo registry (crates.io by default).
« Version bumps in Cargo.toml .

Release-plz updates your packages with a release Pull Request based on:

« Your git history, following Conventional commits.
- API breaking changes (detected by cargo-semver-checks).

Examples

Example #1: pub fn gets deleted

Showing 1 changed file with 0 additions and 3 deletions.

v 3 HER
@@ -1,3 +9,0 @@
1 - pub fn add(left: i64, right: i64) -> i64 {
2 - left + right
3 =

https://github.com/obilkenobi/semver-examples/compare/main...easy 01

https://github.com/obi1kenobi/semver-examples/compare/main...easy_01

$ cargo semver-checks
Parsing easy 01 v0.1.0 (current)
Parsing easy 01 v0.1.0 (baseline)
Checking easy 01 v0.1.0 -> v0.1.0 (no change)
Completed [©.011s] 58 checks; 57 passed, 1 failed, © unnecessary

--- failure function missing: pub fn removed or renamed ---

Description:
A publicly-visible function cannot be imported by its prior path. A pub use may have been
removed, or the function itself may have been renamed or removed entirely.

Failed in:
function easy 01::add, previously in file semver-examples/easy ©01/old/src/lib.rs:1
Final [0.012s] semver requires new major version: 1 major and © minor checks failed

Deletions of pub items are always a major breaking change

Falsehoods we believed about SemVer

ﬂ

e Deletions of pub items are always a major breaking change

mod private {
// This function cannot be imported from
// outside this crate.
44
// Deleting 1t 1s not a breaking change.
pub fn example() {}

mod private {
// This function cannot be imported from
// outside this crate.
44
// Deleting 1t 1s not a breaking change.
pub fn example() {}

#[doc(hidden)]

pub mod macro_helpers {
// This function is public, but
// explicitly documented as not public API
// via #[doc(hidden)] on 1ts module.
//
// Deleting it 1s not a semver major change.
pub fn example() {}

#[doc(hidden)]
pub mod macro_helpers {
pub fn example() {}

}

// Oops! Now the function 1s public API,

// since users can import 1t as

V4 ‘'use this_crate::example;

// without ever touching any non-public API.
pub use macro_helpers::example;

Falsehoods we believed about SemVer

ﬂ

e Deletions of pub items are always a major breaking change

Falsehoods we believed about SemVer

Example #2: adding a field to a struct

1 1 pub struct Foo {

2 2 pub first: 164,

3 3 pub second: bool,
4 + pub third: Option<String>,

4 5 }

5 6

6 7 impl Foo {

” 8 pub fn new(first: i64, second: bool) -> Self {

8 9 Self {

9 10 y ol o

10 11 second,
2 third: None, // set to a default value

11 13 }

12 14 }

13 15 }

https://github.com/obilkenobi/semver-examples/compare/main...med 01

https://github.com/obi1kenobi/semver-examples/compare/main...med_01

Adding fields to a struct can only be breaking via changes to its methods

Falsehoods we believed about SemVer

m

e Adding fields to a struct can only be breaking via changes to its methods

Example #2: adding a field to a struct

1 1 pub struct Foo {

2 2 pub first: 164,

3 3 pub second: bool,
4 + pub third: Option<String>,

4 5 }

5 6

6 7 impl Foo {

” 8 pub fn new(first: i64, second: bool) -> Self {

8 9 Self {

9 10 y ol o

10 11 second,
2 third: None, // set to a default value

11 13 }

12 14 }

13 15 }

https://github.com/obilkenobi/semver-examples/compare/main...med 01

https://github.com/obi1kenobi/semver-examples/compare/main...med_01

Example #2: adding a field to a struct

—————— Not marked
1 1 pub struct Foo { #[non_exhaustive]
2 2 pub first: 164, -
3 3 pub second: bool,
4 + pub third: Option<String>,
4 5 }
5 6
6 7 impl Foo {
” 8 pub fn new(first: i64, second: bool) -> Self {
8 9 Self {
9 10 y ol o
10 11 second,
170 third: None, // set to a default value
11 13 }
12 14 }
13 15 }

https://github.com/obilkenobi/semver-examples/compare/main...med 01

https://github.com/obi1kenobi/semver-examples/compare/main...med_01

Example #2: adding a field to a struct

w

O 0 N O v b

10

11
12
13

O 0 N O v A W N

e
B W N R O

15

pub struct Foo {

pub first: 164,

ub second: bool, . .
; All prior fields were pub
pub third: Option<String>,)

N
Not marked
#[non_exhaustive]
Y,
')

pub fn new(first: i64, second: bool) -> Self {

}
impl Foo {
Self {
y ol o
second,

}

third: None,

// set to a default value

https://github.com/obilkenobi/semver-examples/compare/main...med 01

https://github.com/obi1kenobi/semver-examples/compare/main...med_01

Example #2: adding a field to a struct

N\
—————— Not marked
il 1 pub struct Foo { #[non_exhaustive]
J
2 2 pub first: 164,
e “
3 3 ub second: bool, . .
3 All prior fields were pub
4 + pub third: Option<String>,)
4 5 }
use upstream: :Foo;
5 6
6 7 impl Foo { fn main() {
v 8 pub fn new(first: i64, second: bool) -> Self { A7 DEERS WRkE az?oweq :
// to construct Foo *directlyx*.
8 9 Self { Vo
9 10 first, // This 1s now broken
// since 1t doesn't specify
— — secand, // any value for "third .
12+ third: None, // set to a default value let value = Foo {
11 13 } first: @,
second: false,

12 14 } 3

b
13 15 }

https://github.com/obilkenobi/semver-examples/compare/main...med 01

https://github.com/obi1kenobi/semver-examples/compare/main...med_01

$ cargo semver-checks
Parsing med 01 v0.1.0 (current)
Parsing med 01 v0.1.0 (baseline)
Checking med 01 v0.1.0 -> v0.1.0 (no change)
Completed | ©.010s] 58 checks; 57 passed, 1 failed, © unnecessary

--- failure constructible struct adds field: externally-constructible struct adds field ---

Description:
A pub struct constructible with a struct literal has a new pub field. Existing struct literals

must be updated to include the new field.

Failed in:
field Foo::third, in file semver-examples/med 01/new/src/lib.rs:4
Final [0.010s] semver requires new major version: 1 major and © minor checks failed

Falsehoods we believed about SemVer

m

e Adding fields to a struct can only be breaking via changes to its methods

Falsehoods we believed about SemVer

- ala aValll a -
@ \J YA U S @

Example #3: “internal-only changes”

v 7 HEEE hard 01/0ld/src/lib.rs [CJ

@@ -1,11 +1,14 @@

1
2
(| #[derive(Clone)] 3
2 struct Foo { 4
3 - value: &'static str, 5
6
4 } 7
5 8
6 fn make foo() -> Foo { S
7 Foo { 10
N - value: "some string", 11
9 } 12
10 } 13
2l 14
S

-

use std::rc::Rc;

#[derive(Clone)]
struct Foo {
value: Rc<str>, // support non-static strings;

// ref-count for cheap cloning

fn make foo() -> Foo {
Foo {

value: Rc::from("some string"),

https://github.com/obilkenobi/semver-examples/compare/main...hard 01

https://github.com/obi1kenobi/semver-examples/compare/main...hard_01

“If | didn’t touch it, | didn’t break it.”

Falsehoods we believed about SemVer

ﬂ

- ala aValll a -
@ \J YA U S @

e “If | didn’t touch it, | didn’t break it.”

$ cargo semver-checks
Parsing hard 01 v0.1.0 (current)
Parsing hard 01 v0.1.0 (baseline)
Checking hard 01 v0.1.0 -> v0.1.0 (no change)
Completed | ©.010s] 58 checks; 57 passed, 1 failed, © unnecessary

--- failure auto _trait _impl removed: auto trait no longer implemented ---

Description:
A public type has stopped implementing one or more auto traits. This can break downstream code

that depends on those traits being implemented.

Failed in:
type Bar is no longer Send, in file semver-examples/hard 01/new/src/lib.rs:16

type Bar is no longer Sync, in file semver-examples/hard 01/new/src/lib.rs:16
Final [0.010s] semver requires new major version: 1 major and © minor checks failed

v 7 EHEEE hard_01/0ld/src/lib.rs 0

@@ -1,11 +1,14 @@

N . Use std::rc::Rc;
A Failed in:
1 2 type Bar|is no longer Send,
’ M GRS | type Bar|is no longer Sync,
3 - value: &'static str,
B value: Rc<str>, // support non-static strings;
6 + // ref-count for cheap cloning
4 7 }
5 8
6 9 fn make _foo() -> Foo {
7 10 Foo {
8 e value: "some string",
I value: Rc::from("some string"),
9 12 }
10 13 }
i i | 14

https://github.com/obilkenobi/semver-examples/compare/main...hard 01

https://github.com/obi1kenobi/semver-examples/compare/main...hard_01

v 7 EHEEE hard_01/0ld/src/lib.rs 0

@@ -1,11 +1,14 @@

N . Use std::rc::Rc;
ol - Failed in:
1 3 | #[derive(Clone)] type Bar|is no longer Send,
2 4 struct Foo { t .
e Barlis no longer Sync
3 = value: &'static str, yp g y 2
5 1 value: Rc<str>, // support non-static strings;
Gl + // ref-count for cheap cloning
4 7 }
5 8
| didn’t touch it, so | didn’t break it
6 9 fn make foo() -> Foo {
7 10 Foo { . ? (aa
8 . value: "some string", ot r]ght ?j
1570 R value: Rc::from("some string"),
9 12 }
10 13 }
11 14

https://github.com/obilkenobi/semver-examples/compare/main...hard 01

https://github.com/obi1kenobi/semver-examples/compare/main...hard_01

v 7 EHEEE hard_01/0ld/src/lib.rs 0

@@ -1,11 +1,14 @@

N . Use std::rc::Rc;

o Failed in:
1 3 is no longer Send,
2 4 struct Foo { .
. : ———— type Baris no longer Sync,

B value: Rc<str>, // support non-static strings;

6 + // ref-count for cheap cloning
4 7 }
i ° | didn’t touch it, so | didn’t break it
6 9 fn make _foo() -> Foo {
28 =i .. right? &
8 e value: "some string",

I value: Rc::from("some string"),
9 12 }
})

type Bar is in here

https://github.com/obilkenobi/semver-examples/compare/main...hard 01

https://github.com/obi1kenobi/semver-examples/compare/main...hard_01

15 #[derive(Clone)]

; Bar is public, so its
o= s SEEUEE Bar implemented traits are public.

17 1at: 164,

18 Bar contains a Foo.
19 }

20

21 pub fn barify() -> Bar {

22 Bar {

23 int: 9,

24 foo: make foo(),

25 }

26 }

https://github.com/obilkenobi/semver-examples/compare/main...hard 01

https://github.com/obi1kenobi/semver-examples/compare/main...hard_01

15 #[derive(Clone)]

, Bar is public, so its
= s SEEUEE Bar implemented traits are public.

17 1at: 164,
18 foo: Foo, Bar contains a Foo.
19 }

Auto-traits: traits that are automatically
20 implemented for us whenever possible.

21 pub fn barify() -> Bar {

A type implements an auto-trait

22 Bar { if all its constituents also implement the trait.
23 int: 9,

24 foo: make foo(),

25 }

26 }

https://github.com/obilkenobi/semver-examples/compare/main...hard 01

https://github.com/obi1kenobi/semver-examples/compare/main...hard_01

15 #[derive(Clone)]

16 pub struct Barj|s

i [

18

19 }

20
#[derive(Clone)]

struct Foo {

1at: 164,

foo: Foo,

value: &'static str,

value: Rc<str>, // support non-static strings;

// ref-count for cheap cloning

26

}

Bar is public, so its
implemented traits are public.

Bar contains a Foo.

Auto-traits: traits that are automatically
implemented for us whenever possible.

A type implements an auto-trait
if all its constituents also implement the trait.

& 'static str is both Send and Sync.
Rc<str> is neither.

https://github.com/obilkenobi/semver-examples/compare/main...hard 01

https://github.com/obi1kenobi/semver-examples/compare/main...hard_01

Compiling playground v0.0.1 (/playground)
error[EQ277].: "Rc<str> cannot be shared between threads safely
==p ShEc/mMain.rsii621

36 use_parallelism(value);
——————————————— AAANA "Rc<str>" cannot be shared between threads safely

required by a bound introduced by this call

= help: within "Bar , the trait 'Sync 1is not implemented for "Rc<str>"
note: required because it appears within the type "Foo’
=5 sreltfiainsrs2s5112

5 | struct Foo {

| AWAWAY

note: required because it appears within the type "Bar’
—==% erc/mMain.rs:17:16

LF | pub struct Bar {

| ANNA

note: required by a bound in “use_parallelism’
——3 Sre/mMain..rFrei30132

|
30 | fn use_parallelism(value: impl Sync) {
| AAAN required by this bound in "use_parallelism’

For more 1information about this error, try "rustc --explain E0277 .
error: could not compile "playground (bin "playground") due to previous error

https://github.com/obilkenobi/semver-examples/compare/main...hard 01

https://github.com/obi1kenobi/semver-examples/compare/main...hard_01

Falsehoods we believed about SemVer

ﬂ

- ala aValll a -
@ \J YA U S @

e “If | didn’t touch it, | didn’t break it.”

Falsehoods we believed about SemVer

N

ﬂ

SemverChecks

cargo semver-checks && cargo publish

e

Detects the version bump,
then scans for APl changes
inappropriate for that bump.

_ J

How does this work?

Example: pub fn gets deleted

Showing 1 changed file with 0 additions and 3 deletions.

v 3 HER
@@ -1,3 +9,0 @@
1 - pub fn add(left: i64, right: i64) -> i64 {
2 - left + right
3 =

https://github.com/obilkenobi/semver-examples/compare/main...easy 01

https://github.com/obi1kenobi/semver-examples/compare/main...easy_01

Example: pub fn gets deleted

Breaking change if all of these are true:

Example: pub fn gets deleted

Breaking change if all of these are true:

& Previously, the function was pub

Example: pub fn gets deleted

Breaking change if all of these are true:

& Previously, the function was pub

& Another crate could have
imported and used it

Example: pub fn gets deleted

Breaking change if all of these are true:

& Previously, the function was pub

& Another crate could have
imported and used it

& That import did not rely on any
#[doc(hidden)] items

Example: pub fn gets deleted

Breaking change if all of these are true:

& Previously, the function was pub

& Another crate could have
imported and used it

& That import did not rely on any
#[doc(hidden)] items

& Now, the same import name
no longer satisfies the above

Example: pub fn gets deleted

Find all functions such that:

& Previously, the function was pub

& Another crate could have
imported and used it

& That import did not rely on any
#[doc(hidden)] items

& Now, the same import name
no longer satisfies the above

Example: pub fn gets deleted

Find all functions such that:

& Previously, the function was pub

& Another crate could have
imported and used it

& That import did not rely on any
#[doc(hidden)] items

& Now, the same import name
no longer satisfies the above

This sounds like a database query...

/, Ver<ion podr* l\
Old crate New crate
version version

v

|

Function Function
! Impor’table - -S-O:-w\-e,- f:a-‘t;\- -=> IMPOP'CO\BIQ
eath pcath

Version podr*

4 N

Old crate New crate
version version

\I, RS T)

l FuncTion I ,". Function

[Zwportable |77 2-- "t "> Tmportable ;
Po\‘th '.. PO\'UA ..'

Database query!

Find all functions such that:

& Previously, the function was pub

& Another crate could have
imported and used it

& That import did not rely on any
#[doc(hidden)] items

& Now, the same import name
no longer satisfies the above

This sounds like a database query...

Database query!

Find all functions such that:

& Previously, the function was pub

& Another crate could have
imported and used it

& That import did not rely on any
#[doc(hidden)] items

& Now, the same import name
no longer satisfies the above

This is a database query!

CrateDiff {
baseline {
item {
: on Function {
visibility limit @filter(op: "=", value: ["$public"])
@output
name @output

importable path {
path @output @tag
public_api @filter(op: "=", value: ["$true"])

¥

}
current @fold

@transform(op: "count")
@filter(op: "=", value: ["$zero"]) {
item {
. on Function {
visibility limit @filter(op: "=", value: ["$public"])

importable path {
path @filter(op: "=", value: ["%path"])
}

Database query!

Find all functions such that:

& Previously, the function was pub

& Another crate could have
imported and used it

& That import did not rely on any
#[doc(hidden)] items

& Now, the same import name
no longer satisfies the above

This is a database query!

CrateDiff {
baseline {
item {

¥
¥

current @fold

. on Function {
visibility limit @filter(op: "="
@output

name @output

importable path {

path @output @tag

public api @filter(op: "="

@transform(op: "count")

@filter(op: "=", value: ["$zero"]) {

item {

. on Function {
visibility_limit @filter(op: "="

importable path {

¥

path @filter(op: "="

J

J

value:

, value: ["$public"])

value: ["$true"])

, value: ["$public"])

["%path™])

CrateDiff {
baseline {

item {
Database uery' ... on Function {
= visibility limit @filter(op: "=", value: ["$public"])
@output
______ name @output
. . importable path {
public_api @filter(op: "=", value: ["$true"])
& Previously, the function was pub J
y’ p }

& Another crate could have -

imported and used it current @fold

@transform(op: "count")
& That import did not rely on any N @giltef‘<°p= "=y valuer ["$zero™]) {
item
H [dOC (h_ldden)] items .»+ O Funetioh {
visibility limit @filter(op: "=", value: ["$public"])
& Now, the same import name
, . £ p importable path {
no longer satisfies the above Jath @filter(op: "=", value: ["%path"])
}
}

. . }

This is a database query! }

CrateDiff {
baseline {

item {
Database uery' ... on Function {
= visibility limit @filter(op: "=", value: ["$public"])
@output
______ name @output
. . importable path {
Find all functions such that: sath @output @tag
public_api @filter(op: "=", value: ["$true"])

& Previously, the function was pub } J
& Another crate could have -

imported and used it current @fold

@transform(op: "count")
& That import did not rely on any N @*Eiltef‘<°p= =l Gallien [1
item
H [dOC (h_ldden)] items .»+ O Funetioh {
. visibility limit @filter(op: "=", value: ["$public"])
& Now, the same import name
. £ importable path {
no longer satisfies the above bath @filter(op: "=", value: ["%path"])
}
}

. }

This is a database query! }

CrateDiff {
baseline {
item {
Database query' ... on Function {
" visibility limit @filter(op: "
@output

", value: ["$public"])
______ name @output

. . importable path {
Find all functions such that: sath @output @tag

public_api @filter(op: "=", value: ["$true"])
& Previously, the function was pub

& Another crate could have J

imported and used it

¥
current @fold

@transform(op: "count")

& That import did not rely on any N @‘Eiltef‘<°p= = el | HEeR) 1
1tem
H [dOC(h_Idden)] items .»+ O Funetioh {
hl |1 visibility limit @filter(op: "=", value: ["$public"])
& Now, the same import name
, . £ p importable path {
no longer satisfies the above bath @filter(op: "=", value: ["%path"])
}
}
. }
This is a database query! }
}

CrateDiff {
baseline {
item {
Database query' ... on Function {
" visibility limit @filter(op: "
@output

", value: ["$public"])
______ name @output

. . importable path {
Find all functions such that: sath @output @tag

public_api @filter(op: "=", value: ["$true"])
& Previously, the function was pub

& Another crate could have J

imported and used it

¥
current @fold

@transform(op: "count")

& That import did not rely on any 4 @giltef%ow = el | HEeR) 1
em
H [dOC(h_Idden)] items .»+ O Funetioh {
hl |1 visibility limit @filter(op: "=", value: ["$public"])
& Now, the same import name
, . £ p importable path {
no longer satisfies the above bath @filter(op: "=", value: ["%path"])
}
}
.. }
This is a database query! }
}

ca\rs,o-se,mve,r-che_cks j

k

Rust 1.73 " Rust 1.75
rustdoc % rustdoc

[Rust 1.74 [Rust 1.76
custdoce rustdoc

[Qo\rgo-semvef-checks]

y

[Trastfall

[Qo\rgo-sew\vef-checks]

!

[Trastfall

lir\’t

[co\rgo-semve,r-che_cks LT lof/‘c

\l/ queﬂ/
TrastRall L~ engne

N PPEEEE AR I I format

.....’*L”’ los,?c

=
L J
L 4

" Rust 1.73
< f‘uS’tJoc \l/ .
[Rust 1.74 [Rust 1.76
custdoc rustdoc xxx

Trustfall: Turn everything into a database!

Represent data as a graph, then query any data sources
e Battle-tested: 7+ years in production
e Engine built in Rust; adapters can be Rust / Python / JS / WASM

e Query APls, databases, arbitrary file formats — in-place & without ETL!

FOSS on GitHub: https://github.com/obilkenobi/trustfall

https://github.com/obi1kenobi/trustfall

Trustfall: Turn everything into a database!

Talks on Trustfall:

e “How to Query (Almost) Everything” — HYTRADBOI 2022
https://www.hytradboi.com/2022/how-to-query-almost-everything

e “How Database Tricks Sped up Rust Linting Over 2000x” — P99 CONF 2023
https://www.youtube.com/watch?v=Fqo8r4blnsk

Try Trustfall in our playgrounds:
e rustdoc JSON: https://play.predr.ag/rustdoc

e HackerNews REST APIs: https://play.predr.ag/hackernews

https://www.hytradboi.com/2022/how-to-query-almost-everything
https://www.youtube.com/watch?v=Fqo8r4bInsk
https://play.predr.ag/rustdoc
https://play.predr.ag/hackernews

N

ﬂ

Trustfall makes cargo-semver-checks possible

Focus on linting & ergonomics, not rustdoc JSON format changes

N

ﬂ

Trustfall makes cargo-semver-checks possible

Focus on linting & ergonomics, not rustdoc JSON format changes

e 58 lints and growing — twice as many as a year ago

N

Trustfall makes cargo-semver-checks possible x

Focus on linting & ergonomics, not rustdoc JSON format changes
e 58 lints and growing — twice as many as a year ago

e 32 contributors and growing — many new lints are first-time contributions!

Trustfall makes cargo-semver-checks possible

Focus on linting & ergonomics, not rustdoc JSON format changes

e 58 lints and growing — twice as many as a year ago

e 32 contributors and growing — many new lints are first-time contributions!

e QOur users love us!

* thomaseizinger commented on Nov 2, 2022 Contributor ' | Author

Cl just caught an accidental breaking change! How good is this @

https://github.com/libp2p/rust-libp2p/actions/runs/3374939365/jobs/5601093378#step:8:21

https://github.com/libp2p/rust-libp2p/pull/3073#issuecomment-1299582893

https://github.com/libp2p/rust-libp2p/pull/3073#issuecomment-1299582893

Toward fearless “cargo update”

m

SemVer is valuable, but impossible without automated help.

cargo-semver-checks is a solution with lots of happy users.

https://predr.ag/ @@predrag@hachyderm.io ") PredragGruevski () obilkenobi

Toward fearless “cargo update” n

SemVer is valuable, but impossible without automated help.

cargo-semver-checks is a solution with lots of happy users.

How you can help:

e Contribute code and lints to cargo-semver-checks

https://predr.ag/ @@predrag@hachyderm.io ") PredragGruevski () obilkenobi

https://github.com/sponsors/obi1kenobi

Toward fearless “cargo update” n

SemVer is valuable, but impossible without automated help.

cargo-semver-checks is a solution with lots of happy users.

How you can help:

e Contribute code and lints to cargo-semver-checks

e Sponsor its development: https://github.com/sponsors/obilkenobi

https://predr.ag/ @@predrag@hachyderm.io ") PredragGruevski () obilkenobi

https://github.com/sponsors/obi1kenobi

Toward fearless “cargo update” n

SemVer is valuable, but impossible without automated help.

cargo-semver-checks is a solution with lots of happy users.

How you can help:

e Contribute code and lints to cargo-semver-checks

e Sponsor its development: https://github.com/sponsors/obilkenobi

e Use cargo-semver-checks when others depend on your packages

https://predr.ag/ @@predrag@hachyderm.io ") PredragGruevski () obilkenobi

https://github.com/sponsors/obi1kenobi

