Dune 3D

The making of a maker's tool

Lukas

FOSDEM 2024

what I do

FreeCAD
Solvespace

	FreeCAD
STEP import/export	
Chamfer/Flillet	
Easy referencing	
Non-modal sketcher	
Constraints in 3D	

	FreeCAD	Solvespace
STEP import/export		
Chamfer/Flillet		
Easy referencing		
Non-modal sketcher		
Constraints in 3D		

	FreeCAD	Solvespace	???
STEP import/export			
Chamfer/Flillet			
Easy referencing			
Non-modal sketcher			
Constraints in 3D			

3D viewport

3D viewport

✓ 3D viewport

Geometry kernel

Geometry kernel

OPEN CASCADE Open CASCADE Technology 7.8.0 Q Search

Open CASCADE Technology

- Tutorials and Samples
- Build, Debug and Upgrade
- User Guides
- Foundation Classes
- Modeling Data
- Modeling Algorithms
 - Introduction
- Geometric Tools
- Standard Topological Objects
- Primitives
- Making Primitives

Sweeping: Prism, Revolution ar

- Boolean Operations
- Topological Tools
- ▶ The Topology API
- Planar Fillet
- Hidden Line Removal
- Making touching shapes connected
- Mesh
- Shape Healing
- Visualization
- VTK Integration Services (VIS)
- IGES Translator
- STEP Translator
- Extended Data Exchange (XDE)
- Data Exchange Wrapper (DE_Wrappe
- ▶ OCAF
- Draw Test Harness
- Inspector
- Specifications
- Contribution
- License

Sweeping: Prism, Revolution and Pipe

Sweeping

Sweeps are the objects you obtain by sweeping a profile along a path. The profile can be of any topology. The path is usually a curve or a wire. The profile generates objects according to the following rules:

- · Vertices generate Edges
- Edges generate Faces.
- Wires generate Shells.
- · Faces generate Solids.
- · Shells generate Composite Solids

It is forbidden to sweep Solids and Composite Solids. A Compound generates a Compound with the sweep of all its elements.

Generating a sweep

BRepPrimAPI_MakeSweep class is a deferred class used as a root of the following sweep classes:

- BRepPrimAPI_MakePrism produces a linear sweep
- BRepPrimAPI_MakeRevol produces a rotational sweep
- BRepPrimAPI_MakePipe produces a general sweep.

OPEN CASCADE Open CASCADE Technology 7.8.0 Q Search

Open CASCADE Technology

- Tutorials and Samples
- Build, Debug and Upgrade
- User Guides
 - Foundation Classes
 - Modeling Data
 - Modeling Algorithms

Introduction

- Geometric Tools
- Standard Topological Objects
- Primitives
- Making Primitives

Sweeping: Prism, Revolution ar

- Boolean Operations
- Topological Tools
- ▶ The Topology API
- Planar Fillet
- Hidden Line Removal
- Making touching shapes connected
- Mesh
- Shape Healing
- Visualization
- VTK Integration Services (VIS)
- IGES Translator
- STEP Translator
- Extended Data Exchange (XDE)
- Data Exchange Wrapper (DE_Wrappe
- ▶ OCAF
- Draw Test Harness
- Inspector
- Specifications
- Contribution
- License

Sweeping: Prism, Revolution and Pipe

Sweeping

Sweeps are the objects you obtain by sweeping a profile along a path. The profile can be of any topology. The path is usually a curve or a wire. The profile generates objects according to the following rules:

- · Vertices generate Edges
- Edges generate Faces.
- Wires generate Shells.
- · Faces generate Solids.
- · Shells generate Composite Solids

It is forbidden to sweep Solids and Composite Solids. A Compound generates a Compound with the sweep of all its elements.

Generating a sweep

BRepPrimAPI_MakeSweep class is a deferred class used as a root of the following sweep classes:

- BRepPrimAPI_MakePrism produces a linear sweep
- BRepPrimAPI_MakeRevol produces a rotational sweep
- BRepPrimAPI_MakePipe produces a general sweep.

Geometry kernel

Solver

✓ Geometry kernel

Solver

Examples

Tutorials

Features

Download

Reference

Technology

Library

Forum

Contact

TECHNOLOGY: SOLVING CONSTRAINTS

The core of any parametric CAD program is its geometric constraint solver. The solver starts with geometric properties of the sketch, like a line length or an angle or a tangency. Based on these properties, it calculates a simple representation of the sketch's lines, points, and curves.

For a trivial example, we might specify that a point lies 10 mm from the origin, and 5 mm from the x-axis. We also specify that the line from the origin to that point makes a 65° angle with the z-axis. That point turns out to have (x, y, z) = (8.66, 2.67, 4.23), after solving three equations in three unknowns. A real sketch may involve hundreds of unknowns.

In SolveSpace, constraints are represented as equations in a symbolic algebra system. In general, these equations are solved numerically, by a modified Newton's method. Some special cases are handled, for any equation that can be forward-substitution.

The constraint solver used in SolveSpace is available separately as a library.

✓ Geometry kernel

✓ Solver

Examples

Tutorials

Features

Download

Reference

Technology

Library

Forum

Contact

TECHNOLOGY: SOLVING CONSTRAINTS

The core of any parametric CAD program is its geometric constraint solver. The solver starts with geometric properties of the sketch, like a line length or an angle or a tangency. Based on these properties, it calculates a simple representation of the sketch's lines, points, and curves.

For a trivial example, we might specify that a point lies 10 mm from the origin, and 5 mm from the x-axis. We also specify that the line from the origin to that point makes a 65° angle with the z-axis. That point turns out to have (x, y, z) = (8.66, 2.67, 4.23), after solving three equations in three unknowns. A real sketch may involve hundreds of unknowns.

In SolveSpace, constraints are represented as equations in a symbolic algebra system. In general, these equations are solved numerically, by a modified Newton's method. Some special cases are handled, for any equation that can be forward-substitution.

The constraint solver used in SolveSpace is available separately as a library.

- **√** 3D viewport
- Geometry kernel
- **✓** Solver

User interface

- ✓ 3D viewport
- Geometry kernel
- **✓** Solver

User interface

- ✓ 3D viewport
- Geometry kernel
- **✓** Solver
- **✓** User interface

$$C + +20$$

C + +20

33k LOC

gtkmm 4

C + +20

33k LOC

gtkmm 4

C + +20

33k LOC

6 Months

0d233a6e-9ea3-4ba1-90e2-2a3f96f3f63e

gtkmm 4

C + +20

33k LOC

JSON

6 Months

0d233a6e-9ea3-4ba1-90e2-2a3f96f3f63e

This is the first versioned release of Dune 3D

See the docs for installation instructions.

Changelog

since this is the first versioned release, there is no changelog yet

Assets

☆ dune3d-1.0.0-x64.msi 59.9 MB 3 days ago Source code (zip) 3 days ago Source code (tar.gz) 3 days ago

√ v1.0.0

-o- ae9fdb4

10 people reacted

- Sketch
 - Lines
 - Arcs
 - Circles
- Constraints
- All-in-one tool
- Regular polygon
- Rectangle

- Extrude
- Lathe

- Linear array
- Polar array

- 3D Constraints
 - Distance
 - Angle
 - Point in plane
 - Point/plane distance

- STEP import
 - Extractreferencepoints frommodel

- Chamfers
- Fillets
- Toplogicalnaming problem\(\pi\)

So how does it work?

So how does it work?

What's next?

- Measurements
- Revolution
- Copy/paste
- Better solver integration
- Various UI enhancements

That's it

dune3d.org