
Lift and shift: Modernising a
legacy LAMP application with

systemd-nspawn
Martin Lucina, martin@lucina.net

@mato@mastodon.1984.cz

FOSDEM 2024, Containers devroom

1 / 13

I. Setting the stage

A phone call one evening:

“Our sole IT person is leaving after 20 years. They developed the entire system
our school runs on. We need someone who understands software, and who
we can trust.”

“Our business depends on it. We need to keep this running, one way or
another, for the next 20 years. I have no idea what state it's in, except that it's
not very good.”

“They leave in a month.”

“Can you help?”

2 / 13

II. Setting the stage

They weren't kidding ... about the system being in a less than ideal state.

ls -l /etc/debian_version
-rw-r--r-- 1 root root 6 2009-08-30 22:01 /etc/debian_version
cat /etc/debian_version
5.0.3

ii apache 1.3.34-4.1+etch1
ii apache-common 1.3.34-4.1+etch1
rc apache2.2-common 2.2.3-4
ii libapache-mod-php4 4.4.4-8+etch6
rc libapache2-mod-php5 5.2.0-8+etch7
ii libssl0.9.8 0.9.8g-15+lenny3
ii mysql-server 5.0.51a-24+lenny2
ii mysql-server-5.0 5.0.51a-24+lenny2
ii php4-common 4.4.4-8+etch6
ii php5-common 5.2.6.dfsg.1-1+lenny3
ii php4-mysql 4.4.4-8+etch6

And a quick, naive, SLOCCount of /var/www/html reveals:

Totals grouped by language (dominant language first):
php: 226839 (80.62%)

3 / 13

III. Salvage!

My naive plan:

Extract as much business and technical knowledge as possible, before the
original author dissapears forever.

Then:

1. Virtualize all the things!
2. Secure the obvious attack surfaces.
3. Split off the business-critical system.
4. Do so in a way that will be future-proof and maintainable.
5. All while keeping it running with minimal disruption thoughout the

school year.

4 / 13

IV. Enter containers, stage left.

I wanted a way of reproducibly re-building the 15 year old enviroment that the
legacy LAMP application depended on, which I could host on modern
infrastructure and maintain with modern tools.

The Debian community have developed reproducible container images of EOL
releases, available on Docker Hub as debian/eol.

However, Docker doesn't really fit the bill — this application is very much a
pet, not cattle!

I wanted something more like FreeBSD jails, or Solaris zones.

Enter systemd-nspawn(1), the Swiss Army Knife of Linux containers.

5 / 13

https://hub.docker.com/r/debian/eol/
https://www.freedesktop.org/software/systemd/man/latest/systemd-nspawn.html

V. 2009 meets 2023, kicking and screaming.

Getting from a Docker image to a rootfs that we can run with systemd-nspawn
is easy:

$ skopeo copy -f oci docker://registry.docker.com/debian/eol:lenny oci:build/lenny-oci
$ oci-image-tool create --ref platform.os=linux build/lenny-oci build/lenny-bundle
$ cp -pRdu --reflink=always build/lenny-bundle/rootfs run/rootfs
chown -hR root:root run/rootfs

Then we try and run it, and 2009 calls and wants its syscalls back:

systemd-nspawn --directory=run/rootfs -M ctr-lenny /bin/sh
Spawning container ctr-lenny on /home/fosdem-containers/run/rootfs.
Press ^] three times within 1s to kill container.

Container ctr-lenny terminated by signal SEGV.

newbug systemd[1]: Started machine-ctr\x2dlenny.scope - Container ctr-lenny.
newbug kernel: sh[2263] vsyscall attempted with vsyscall=none ip:ffffffffff>
newbug kernel: sh[2263]: segfault at ffffffffff600400 ip ffffffffff600400 s>
newbug kernel: Code: Unable to access opcode bytes at 0xffffffffff6003d6.

6 / 13

VI. 2009 meets 2023 and they make up.

Adding vsyscall=emulate to our kernel command line and rebooting gets
us:

systemd-nspawn --directory=run/rootfs -M ctr-lenny /bin/sh
Spawning container ctr-lenny on /home/fosdem-containers/run/rootfs.
Press ^] three times within 1s to kill container.
sh-3.2# cat /etc/debian_version
5.0.10
sh-3.2# exit
exit
Container ctr-lenny exited successfully.

7 / 13

VII. From /bin/sh to /sbin/init.

If all we want is a /bin/sh and apt-get in a Debian lenny container, then so
far, so good!

But, we want more than that:

1. Run a full /sbin/init in the container, which will manage the LAMP
stack services.

2. Integrate the container's networking with the host system's
systemd-networkd.

3. Integrate the container's /dev/log with the host system's
systemd-journald.

4. Use user namespacing to give us a private set of UIDs/GIDs in the
container.

5. Start and stop the container as a systemd service on the host.

I made a script, so that you don't have to! Please follow along at
https://gist.github.com/mato/35477cf13a68411555546f650b8a391e

8 / 13

https://gist.github.com/mato/35477cf13a68411555546f650b8a391e

VIII. INIT: version 2.86 booting

You can now boot the resulting rootfs as follows:

systemd-nspawn \
 -M ctr-lenny \
 --directory=run/rootfs \
 --private-users=pick \
 --network-veth \
 --kill-signal=SIGINT \
 --boot

Login on the console, and note that ^C will shut down the container cleanly.
This is desirable when it is started as a systemd unit.

9 / 13

IX. Gotchas: Networking.

Networking:

systemd-networkd almost does all the things by default.
The host needs the net.ipv4.ip_forward = 1 sysctl enabled.
If you're doing anything in your FORWARD chain, ensure you have
something like:

iptables -I FORWARD 1 -i ve-+ -j ACCEPT
iptables -I FORWARD 1 -o ve-+ -j ACCEPT

Old DHCP clients are picky about checksums:

iptables -t mangle -A POSTROUTING -o ve-+ -p udp --dport 68 -j CHECKSUM --checksum-fill

Your mileage will vary.

10 / 13

X. Gotchas: Logging.

systemd-journald namespaces are great. But, using them naively results in
the systemd-journald for our namespace exiting immediately, due to no clients
connecting.

Copy /etc/systemd/journald.conf to journald@ctr-lenny.conf
and set MaxRetentionSec=1year to fix this.
systemctl start systemd-journald@ctr-lenny.service gets us a
socket at /run/systemd/journal.ctr-lenny/dev-log.
Bind mount this into the container with
--bind=/run/systemd/journal.ctr-lenny/dev-log:/dev/log.

Apart from that, well documented in systemd-journald(8).

11 / 13

XI. Startup and shutdown.

systemd-nspawn comes with a default unit file, at

/lib/systemd/system/systemd-nspawn@.service.

Start with that and customize to suit as e.g. /etc/systemd/system/app-
nspawn@.service.

Useful runes:

Wants=systemd-journald@%i.service

... gets you a proper dependency on the service providing the matching
journald namespace.

And, start with this for ExecStart:

ExecStart=systemd-nspawn --quiet --keep-unit --settings=override --boot \
--machine=%i --directory=/srv/app/%i/rootfs --private-users=pick --network-veth \
--kill-signal=SIGINT --bind=/run/systemd/journal.%i/dev-log:/dev/log (...)

12 / 13

XII. Conclusion.

The application is running fine in production!

There is way more I could rant about for a long time, mainly about PHP 4 and
MySQL 5.

Did I mention it's all running in the CP1250 character set?

But, at least it's 64-bit now, so it won't fall over in 2038!

I'll end with a conversation with my friend Martin Sústrik:

“What is more complicated? The unikernel research and development work you
did for the last few years prior, or this work?”

“Oh this work, definitely!”

13 / 13

