Linux' receive fd replace()
semantics confusing

Tycho Andersen <tandersen@netflix.com>
Alok Tiagi <atiagi@netflix.com>

We want to intercept connect|()

BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, __NR_connect, 0, 1),
BPF_STMT(BPF_RET + BPF_K, SECCOMP_RET_USER_NOTIF),

We want to intercept connect|()

BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, __NR_connect, 0, 1),
BPF_STMT(BPF_RET + BPF_K, SECCOMP_RET_USER_NOTIF),

And then replace the fd,

ioctl(n, SECCOMP_IOCTL_NOTIF_ADDFD, ...);

We want to intercept connect|()

BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, __NR_connect, 0, 1),
BPF_STMT(BPF_RET + BPF_K, SECCOMP_RET_USER_NOTIF),

And then replace the fd,
ioctl(n, SECCOMP_IOCTL_NOTIF_ADDFD, ...);
Which eventually invokes

receive_fd_replace(...);
/* seccomp is only user */

Applications want to...

int epfd = epoll_create();
int sock = socket();

Applications want to...

int epfd = epoll_create();
int sock = socket();

epoll_ctl(epfd, EPOLL_CTL_ADD, sock, ...);
connect(sock, ...);

First, epoll in the kernel

What does epoll do?

epoll_ctl(epfd, ADD, sockl /* 5 */, epoll_data.fd = 5);

(5, struct file * Ox5, .data=5)

What does epoll do?

epoll_ctl(epfd, ADD, sockl /* 5 */, epoll_data.fd
epoll_ctl(epfd, ADD, sock2 /* 6 */, epoll_data.fd

]
(6]
~

6),;

(5, struct file * Ox5, .data=5)

(6, struct file * Ox6, data=6)

What does epoll do?

epoll_ctl(epfd, ADD, sockl /* 5 */, epoll_data.fd = 5);
epoll_ctl(epfd, ADD, sock2 /* 6 */, epoll_data.fd = 6);
epoll_ctl(epfd, ADD, sock3 /* 7 */, epoll_data.fd = 7);

(5, struct file * 0x5, .data=5)

(6, struct file * Ox6, data=6) (7, struct file * 0x7, data=7)

When a socket receives data...

epoll_wait(epfd, &event);
// data received on 5

When a socket receives data...

epoll_wait(epfd, &event);
// data received on 5
event.data ==

read(5);

// profit

Mix in seccomp ADDFD

Applications want to...

int epfd = epoll_create();
int sock = socket();

epoll_ctl(epfd, EPOLL_CTL_ADD, sock, ...);
connect(sock, ...);

What happens with seccomp ADDFD?

connect(5, ...);

What happens with seccomp ADDFD?

connect(5, ...);
ioctl(notify, SECCOMP_RECV, ...);

What happens with seccomp ADDFD?

connect(5, ...);
ioctl(notify, SECCOMP_RECV, ...);
int newsock = socket(...);

What happens with seccomp ADDFD?

connect(5, ...);
ioctl(notify, SECCOMP_RECV, ...);
int newsock = socket(...);
struct seccomp_addfd addfd = {
.srcfd = newsock /* 06x8 */,
.newfd 5,
.flags = SECCOMP_SETFD,

b
ioctl(notify, SECCOMP_ADDFD, &addfd);

What happens with seccomp ADDFD?

connect(5, ...);
ioctl(notify, SECCOMP_RECV, ...);
int newsock = socket(...);
struct seccomp_addfd addfd = {
.srcfd = newsock /* 06x8 */,
.newfd 5,
.flags = SECCOMP_SETFD,

}i
ioctl(notify, SECCOMP_ADDFD, &addfd);
-> receive_fd_replace(
5, struct file * / 0x8 */);
-> ..
-> rcu_assign_pointer(fdt->fd[fd],
file);

What happens with seccomp ADDFD?

connect(5, ...);
ioctl(notify, SECCOMP_RECV, ...);
int newsock = socket(...);
struct seccomp_addfd addfd = {
.srcfd = newsock /* 06x8 */,
.newfd 5,
.flags = SECCOMP_SETFD,

}
ioctl(notify, SECCOMP_ADDFD, &addfd);
-> receive_fd_replace(
5, struct file * / 0x8 */);
-> ..
-> rcu_assign_pointer(fdt->fd[fd],
file);
read(5); /* reads struct file 0x8 */

What doesn’t happen?

1. This is the only copy of the struct file *
a. File is removed from epoll instance since it is closed when replaced via
__fput() -> epoll_release()
2. There are multiple copies of the struct file *
a. The file remains in the epoll instance

What ideally would happen?

connect(5, ...);
-> receive_fd_replace(5, struct file /* 0x8 */);

(5, struct file * 0x5, .data=5)

(6, struct file * Ox6, data=6) (7, struct file * 0x7, data=7)

Now you are in a very weird state

read(5); /* reads struct file 0x8 */
// reports data on struct file 0x5
epoll_wait(epfd, &event);

event.data == 5;

read(5); /* reads 0x8, sad panda */

What ideally would happen?

connect(5, ...);
-> receive_fd_replace(5, struct file /* 0x8 */);

(5, struct file * 0x5, .data=5)

(6, struct file * Ox6, data=6) (7, struct file * 0x7, data=7)

What ideally would happen?

connect(5, ...);
-> receive_fd_replace(5, struct file /* 0x8 */);

(5, struct file * 0x8, .data=5)

(6, struct file * Ox6, data=6) (7, struct file * 0x7, data=7)

How to fix this?

From userspace (aka The CRIU Way)

to_replace = 5
for each potential_epoll_fd:
look in fdinfo for ‘tfd:’ == to_replace:
epfd = potential_epoll_fd
epolls[epfd] = (tfd, data /* also from fdinfo */)
/* no DEL needed, handled in fput() */
do_replace()
for fd, (tfd, data) in epolls:
epoll_ctl(ADD, tfd, fd, data)

From userspace (aka The CRIU Way)

e lterating (+parsing strings) for each fd slow
e 40k fds -> 100+ms for a non-blocking connect

With extra fdinfo?

The kernel knows (via struct file->f_ep) what epolls this file is linked to
Wouldn’t have to do for each open fd

Still requires string slinging

Everyone who uses this API has to do it

Fdinfo is currently file type specific, this would add “generic” fields

From receive_replace fd()?

e Then everyone wouldn’t have to write this code

e Patch series here:
https://lore.kernel.org/lkmi/20230318060248.848099-1-aloktiagi@gmail.com/

e Layering violation (fdtable touching epoll)

e Seccomp is the only user in the tree (currently) of receive replace_fd()

e Christian suggests in:
https://lore.kernel.org/lkml/20230327090106.zylztuk/7vble7ye@wittgenstein/
something like,

https://lore.kernel.org/lkml/20230318060248.848099-1-aloktiagi@gmail.com/
https://lore.kernel.org/lkml/20230327090106.zylztuk77vble7ye@wittgenstein/

From receive_replace fd()?

if (addfd->ioctl_flags & SECCOMP_IOCTL_EPOLL_FIXUP) {
epoll_seccomp_notify(...);
}

e Other users of receive _replace fd() have to figure this out
e Flags for receive replace fd()?
o Still a layering violation, but at least more obvious to callers
what’s going on

Similar problems / future work

e ADDFD replaces file at one fd, what about dup/dup2?
o Such an REPLACE_ALL_STRUCT _FILE is unavoidably O(fds)
o Can figure out in userspace via kemp() in one task

e Other files-of-files (io_uring, select, etc.)

Merci

Tycho Andersen <tandersen@netflix.com>
Alok Tiagi <atiagi@netflix.com>

