
Linux' receive_fd_replace()
semantics confusing
Tycho Andersen <tandersen@netflix.com>

Alok Tiagi <atiagi@netflix.com>

We want to intercept connect()

BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, __NR_connect, 0, 1),
BPF_STMT(BPF_RET + BPF_K, SECCOMP_RET_USER_NOTIF),

We want to intercept connect()

BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, __NR_connect, 0, 1),
BPF_STMT(BPF_RET + BPF_K, SECCOMP_RET_USER_NOTIF),

And then replace the fd,

ioctl(n, SECCOMP_IOCTL_NOTIF_ADDFD, ...);

We want to intercept connect()

BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, __NR_connect, 0, 1),
BPF_STMT(BPF_RET + BPF_K, SECCOMP_RET_USER_NOTIF),

And then replace the fd,

ioctl(n, SECCOMP_IOCTL_NOTIF_ADDFD, ...);

Which eventually invokes

receive_fd_replace(...);
/* seccomp is only user */

Applications want to…

int epfd = epoll_create();
int sock = socket();

Applications want to…

int epfd = epoll_create();
int sock = socket();

epoll_ctl(epfd, EPOLL_CTL_ADD, sock, ...);
connect(sock, ...);

First, epoll in the kernel

What does epoll do?

epoll_ctl(epfd, ADD, sock1 /* 5 */, epoll_data.fd = 5);

(5, struct file * 0x5, .data=5)

What does epoll do?

epoll_ctl(epfd, ADD, sock1 /* 5 */, epoll_data.fd = 5);
epoll_ctl(epfd, ADD, sock2 /* 6 */, epoll_data.fd = 6);

(5, struct file * 0x5, .data=5)

(6, struct file * 0x6, data=6)

What does epoll do?

epoll_ctl(epfd, ADD, sock1 /* 5 */, epoll_data.fd = 5);
epoll_ctl(epfd, ADD, sock2 /* 6 */, epoll_data.fd = 6);
epoll_ctl(epfd, ADD, sock3 /* 7 */, epoll_data.fd = 7);

(5, struct file * 0x5, .data=5)

(6, struct file * 0x6, data=6) (7, struct file * 0x7, data=7)

When a socket receives data…

epoll_wait(epfd, &event);
// data received on 5

When a socket receives data…

epoll_wait(epfd, &event);
// data received on 5
event.data == 5
read(5);
// profit

Mix in seccomp ADDFD

Applications want to…

int epfd = epoll_create();
int sock = socket();

epoll_ctl(epfd, EPOLL_CTL_ADD, sock, ...);
connect(sock, ...);

What happens with seccomp ADDFD?

connect(5, ...);

What happens with seccomp ADDFD?

connect(5, ...);
ioctl(notify, SECCOMP_RECV, ...);

What happens with seccomp ADDFD?

connect(5, ...);
ioctl(notify, SECCOMP_RECV, ...);
int newsock = socket(...);

What happens with seccomp ADDFD?

connect(5, ...);
ioctl(notify, SECCOMP_RECV, ...);
int newsock = socket(...);
struct seccomp_addfd addfd = {
 .srcfd = newsock /* 0x8 */,
 .newfd = 5,
 .flags = SECCOMP_SETFD,
};
ioctl(notify, SECCOMP_ADDFD, &addfd);

What happens with seccomp ADDFD?

connect(5, ...);
ioctl(notify, SECCOMP_RECV, ...);
int newsock = socket(...);
struct seccomp_addfd addfd = {
 .srcfd = newsock /* 0x8 */,
 .newfd = 5,
 .flags = SECCOMP_SETFD,
};
ioctl(notify, SECCOMP_ADDFD, &addfd);
-> receive_fd_replace(
 5, struct file * / 0x8 */);
-> ...
-> rcu_assign_pointer(fdt->fd[fd],
 file);

What happens with seccomp ADDFD?

connect(5, ...);

read(5); /* reads struct file 0x8 */

ioctl(notify, SECCOMP_RECV, ...);
int newsock = socket(...);
struct seccomp_addfd addfd = {
 .srcfd = newsock /* 0x8 */,
 .newfd = 5,
 .flags = SECCOMP_SETFD,
};
ioctl(notify, SECCOMP_ADDFD, &addfd);
-> receive_fd_replace(
 5, struct file * / 0x8 */);
-> ...
-> rcu_assign_pointer(fdt->fd[fd],
 file);

What doesn’t happen?

1. This is the only copy of the struct file *
a. File is removed from epoll instance since it is closed when replaced via

__fput() -> epoll_release()

2. There are multiple copies of the struct file *
a. The file remains in the epoll instance

What ideally would happen?

connect(5, ...);
-> receive_fd_replace(5, struct file /* 0x8 */);

(5, struct file * 0x5, .data=5)

(6, struct file * 0x6, data=6) (7, struct file * 0x7, data=7)

Now you are in a very weird state

read(5); /* reads struct file 0x8 */
// reports data on struct file 0x5
epoll_wait(epfd, &event);
event.data == 5;
read(5); /* reads 0x8, sad panda */

What ideally would happen?

connect(5, ...);
-> receive_fd_replace(5, struct file /* 0x8 */);

(5, struct file * 0x5, .data=5)

(6, struct file * 0x6, data=6) (7, struct file * 0x7, data=7)

What ideally would happen?

connect(5, ...);
-> receive_fd_replace(5, struct file /* 0x8 */);

(5, struct file * 0x8, .data=5)

(6, struct file * 0x6, data=6) (7, struct file * 0x7, data=7)

How to fix this?

From userspace (aka The CRIU Way)

to_replace = 5
for each potential_epoll_fd:
 look in fdinfo for ‘tfd:’ == to_replace:
 epfd = potential_epoll_fd
 epolls[epfd] = (tfd, data /* also from fdinfo */)
 /* no DEL needed, handled in fput() */
do_replace()
for fd, (tfd, data) in epolls:
 epoll_ctl(ADD, tfd, fd, data)

From userspace (aka The CRIU Way)

● Iterating (+parsing strings) for each fd slow
● 40k fds -> 100+ms for a non-blocking connect

With extra fdinfo?

● The kernel knows (via struct file->f_ep) what epolls this file is linked to
● Wouldn’t have to do for each open fd
● Still requires string slinging
● Everyone who uses this API has to do it
● Fdinfo is currently file type specific, this would add “generic” fields

From receive_replace_fd()?

● Then everyone wouldn’t have to write this code
● Patch series here:

https://lore.kernel.org/lkml/20230318060248.848099-1-aloktiagi@gmail.com/
● Layering violation (fdtable touching epoll)
● Seccomp is the only user in the tree (currently) of receive_replace_fd()
● Christian suggests in:

https://lore.kernel.org/lkml/20230327090106.zylztuk77vble7ye@wittgenstein/
something like,

https://lore.kernel.org/lkml/20230318060248.848099-1-aloktiagi@gmail.com/
https://lore.kernel.org/lkml/20230327090106.zylztuk77vble7ye@wittgenstein/

From receive_replace_fd()?

if (addfd->ioctl_flags & SECCOMP_IOCTL_EPOLL_FIXUP) {
 epoll_seccomp_notify(...);
}

● Other users of receive_replace_fd() have to figure this out
● Flags for receive_replace_fd()?

○ Still a layering violation, but at least more obvious to callers
what’s going on

Similar problems / future work

● ADDFD replaces file at one fd, what about dup/dup2?
○ Such an REPLACE_ALL_STRUCT_FILE is unavoidably O(fds)
○ Can figure out in userspace via kcmp() in one task

● Other files-of-files (io_uring, select, etc.)

Merci
Tycho Andersen <tandersen@netflix.com>

Alok Tiagi <atiagi@netflix.com>

