
Units of Composition
recipes, overlays, and packages

Thomas Bereknyei (tomberek) flox

Introduction
• What is this called?
• Why it matters?
• What problems we encounter?
• Proposals
• Examples
• References

Disclaimer: Intermediate Nix experience helpful

What is this called?
{ stdenv , fetchurl }:

stdenv.mkDerivation (finalAttrs: {
pname = "hello";
version = "2.12.1";

src = fetchurl {
url = "mirror://gnu/hello/hello-${finalAttrs.version}.tar.gz";
sha256 = "sha256-jZkUKv2SV28wsM18tCqNxoCZmLxdYH2Idh9RLibH2yA=";

};
})

. . .

Often called a “package”, but that’s not quite right?

The main idea of this talk is to explain how we work with this, and to suggest
we give it a name.

Docker has a name for the image, and names for containers, not the recipe. It
might produce a package. It is missing

1

Package: take 1
Create a package.nix file in the package directory, containing a
Nix expression — a piece of code that describes how to build the
package. In this case, it should be a function that is called with
the package dependencies as arguments, and returns a build of the
package in the Nix store.

Nixpkgs pkgs/README.md

Package: take 2
Nix doesn’t really have a notion of “package”. The term is only
mentioned in a few places in the code, . . . Nixpkgs on the other
hand is all about packages, but it does not define precisely what a
package is.

Nix Issue #6507

roberth proposed a definition of package

Package: take 3
I think we need to expose all the functions we callPackage on their
own.

As a middle ground, also expose the function to be fixed (“all pack-
ages”) but no fixed point “yet”

Nixpkgs Issue #172008

The value of a name
• They allow us to communicate.
• They allow us to teach.
• They allow us to precisely define abstractions.

why we should care
• This thing is used throughout Nixpkgs
• Beginners encounter this.
• We build further abstractions over it.
• Nix should understandable.

2

https://github.com/NixOS/nixpkgs/blob/master/pkgs/README.md
https://github.com/NixOS/nix/issues/6507
https://github.com/NixOS/nixpkgs/issues/172008

There is a long history of the importance of having a name. Knowing a name
gives you power over it.

problems
• “I created a package. How can I build it?”
• “I got a package to build, how can i add it to Nixpkgs?”
• “My other packages can’t see my own package.”
• “My NixOS/home-manager can’t see my package.”
• “What is an overlay?”
• Overlays, fixed points, callPackage: oh my!
• “What is a flake? How do I add my package?”

callPackage
• A function which will call your definition with the correct arguments from

a scope1 and provide a few usability benefits such as overrides.
1https://github.com/NixOS/nixpkgs/blob/master/lib/customisation.nix#L308

3

• Used throughout Nixpkgs to avoid tedious and error-prone threading of
dependencies from their declaration to where they are used.

• good reference at: https://summer.nixos.org/blog/callpackage-a-tool-for-
the-lazy/

poorly named

callPackage: overview
let

callPackageWith = scope: f: extra:
let argsFrom = builtins.intersectAttrs (builtins.functionArgs f);
f (argsFrom scope // extra);

callPackage = callPackageWith ({
a = 1;
b = 2;

} // packages);

packages = {
c = callPackage ({a}: a + 2) {};
d = callPackage ({a,c}: a + c) {};

};
in

packages

define the helper
define a function with three arguments
callPackageWith = scope: f: extra:

let argsFrom =
extract those arguments from the scope
builtins.intersectAttrs

extract the required arguments of the function
(builtins.functionArgs f);

call the original function with the extracted args
f (argsFrom scope // extra);

define callPackage
callPackageWith = scope: f: extra: ...;

"capture" a scope that remaining callers have access to
callPackage = callPackageWith (

4

a simple scope (or Nixpkgs)
{

a = 1;
b = 2;

}

. . .

The most mind-boggling thing.
Expand the scope with the packages we are about to define.
Requires lazy language.
// packages);

callPackage captures a closure and extends it

using callPackage
{

callPackageWith = scope: f: extra: ...;
callPackage = f: extra: ... // packages);

packages = {
c = callPackage functionC {};
d = callPackage functionD {};

};
}

This looks reasonable. Next, one would want to make this set of extensions
available and re-usable, we’ve given this concept a name: “overlays”.

using overlays
callPackageWith = scope: f: extra: ...;
callPackage = f: extra: ...;
packages = {...};

overlay = final: prev: {
c = final.callPackage functionC {};
d = final.callPackage functionD {};

};

What is final? prev? Does anyone understand this?

5

overlays
• overlays are very powerful
• error prone: infinite recursion, nested sets, . . .
• most users don’t need that full expressivity
• most common to add a packge or two to the scope
• difficult to extract the original re-usable function

. . .

Overlays are the correct way compose packages, but are hard to use.

Package sets
callPackageWith = scope: f: extra: ...;
callPackage = f: extra: ...;

packages =
Provide the base packages and the new ones.
let pkgs = {...};
in

Include hooks to be able to further add more.
pkgs // { inherit callPackage extend pkgs; };

Package set features
• We have several in Nixpkgs, but not standardized

– pkgs (top-level)
– pythonPackages + python3Packages
– haskellPackages
– perlPackages
– . . .

• Includes the machinery needed to use.
• Relatively unknown how they work.
• Difficult to nest: try overriding in pythonPackages

NAT Proposal: standardize + document package sets

6

scopes
Not a full treatment of the topic, but worth being aware of. Creating a scope
allows one to add a bunch of packages to a set, compose everything, then later
extract only the ones you added.

callPackageWith = scope: f: extra: {...};

makeScope = callPackageWith: f:
let self = f self // {

callPackageWith = scope: callPackageWith (self // scope);
packages = f;

};
in self;

nixpkgs internals

Proposals
Things we can discuss and do today.

name this thing
{ stdenv , fetchurl }:

stdenv.mkDerivation (finalAttrs: {
pname = "hello";
version = "2.12.1";

src = fetchurl {
url = "mirror://gnu/hello/hello-${finalAttrs.version}.tar.gz";
sha256 = "sha256-jZkUKv2SV28wsM18tCqNxoCZmLxdYH2Idh9RLibH2yA=";

};
})

Proposal: Names
• package: related, but misses key concepts
• package function: correct, but awkward
• derivation: not until resolved
• proto-derivation: correct, but awkward
• blueprint: sterile
• recipe: instructions which allow variations

7

https://github.com/NixOS/nixpkgs/blob/master/lib/customisation.nix

Any name is better than no name?

recipe
• instructions
• allows for variations
• cookbooks

8

standard flake output
recipes = {

my-app-a = import ./pkgs/my-app-a/;
my-app-b = {runCommand}: runCommand "b" {} "touch $out";
my-app-c = {hello}: hello.overrideAttrs (_: {name = "c";});
my-data = {}: "some data, some data";

};

. . .

• no “system”, friendly to cross-compiling
• obvious translation from a “cookbook” into overlays
• “recipes” as a an official top-level flake output.
• nixpkgs expose them prior to being callPackage’d.
• no lockfiles needed
• frameworks: FUP, flake-parts, devenv, flox, etc.

9

no lockfile bloat
recipes.packages = {

my-app-a = import ./pkgs/my-app-a/;
my-app-b = {runCommand}: runCommand "b" {} "touch $out";
my-app-c = {hello}: hello.overrideAttrs (_: {name = "c";});
my-data = {}: "some data, some data";

};

These are pure functions with no references to a system or a nixpkgs. So they
can be accessed without needing to bring in transitive inputs.

additional thoughts
{stdenv, fetchurl}: # User question: "what am I allowed to put here?"

stdenv.mkDerivation {
pname = "bbbb";
version = "1.0";
src = ...;

}

Hard question to answer if someone has used overlays, overrides, added new
packages, or are in a nested package set. We can expose this scope directly!

$ nix search .#context gcc
$ nix search .#scope.myPackages gcc

What is next?
• no underlying techincal changes required
• a social convention is enough to start
• thoughts?
• RFC?
• add support in libraries and frameworks
• developer experience needs to expand

“using”
using baseNixpkgs {

hello-go = ./pkgs/hello-go;
hello-perl = ./pkgs/hello-perl;

python3Packages = {
hello-python-library = ./pkgs/python3Packages/hello-python-library;

};
hello-python = ./pkgs/hello-python;

10

Escape-hatch into full nixpkgs overrides
hello-python-override =

callPackage: (callPackage ./pkgs/hello-python {})
.overrideAttrs (_: {name="hello-python-override";});

}

Demo?
No time, but this approach exists in various forms.

This talk about trying to explain and then change how we think about such
topics.

References
Nixpkgs pkgs/README.md Nix Issue #6507 Nixpkgs Issue #172008 customi-
sation https://summer.nixos.org/blog/callpackage-a-tool-for-the-lazy/ nixpkgs
internals

11

https://github.com/NixOS/nixpkgs/blob/master/pkgs/README.md
https://github.com/NixOS/nix/issues/6507
https://github.com/NixOS/nixpkgs/issues/172008
https://github.com/NixOS/nixpkgs/blob/master/lib/customisation.nix#L308
https://github.com/NixOS/nixpkgs/blob/master/lib/customisation.nix#L308
https://github.com/NixOS/nixpkgs/blob/master/lib/customisation.nix
https://github.com/NixOS/nixpkgs/blob/master/lib/customisation.nix

	Introduction
	What is this called?
	Package: take 1
	Package: take 2
	Package: take 3
	The value of a name
	why we should care

	problems
	callPackage
	callPackage: overview
	define the helper
	define callPackage
	using callPackage
	using overlays
	overlays

	Package sets
	Package set features
	scopes

	Proposals
	name this thing
	Proposal: Names
	recipe
	standard flake output
	no lockfile bloat
	additional thoughts
	What is next?
	“using”
	

	Demo?
	References

