
Copyright(c)2024 NTT Corp. All Rights Reserved. 1 

vscode-container-wasm: An Extension of VSCode on
Browser for Running Containers Within Your Browser

Kohei Tokunaga, NTT Corporation

FOSDEM 2024 (Feb. 3)

Copyright(c)2024 NTT Corp. All Rights Reserved.

Summary

2 

● On-browser VSCode lacks Linux terminal running completely inside
browser

● vscode-container-wasm enables to run Linux-based containers and its
terminal inside browser

● Options for distributing containers to browsers
○ Pre-converting containers to Wasm images
○ Distributing OCI container images to browsers

Copyright(c)2024 NTT Corp. All Rights Reserved.

Terminals on browser-based VSCode

3 

On-browser VSCode lacks Linux terminal running completely inside browser

● Users can edit code but can’t run it without remote machine

● Linux-based development tools (e.g. compilers) can’t run in browser

Copyright(c)2024 NTT Corp. All Rights Reserved.

Browsers don’t provide Linux-compatible system

4 

● Linux-based apps needs re-implementation to run inside browser

● Wasm lacks Linux-compatibility (e.g. no fork/exec)

● Can we run unmodified Linux terminal & dev environment inside
browser?

Copyright(c)2024 NTT Corp. All Rights Reserved.

vscode-container-wasm extension

5 

● An experimental VSCode extension
for running containers inside browser

● Workspace mounted at /workspace/

● HTTP(S) networking available w/
restrictions by browser (e.g. CORS)

ktock.container-wasm

Copyright(c)2024 NTT Corp. All Rights Reserved.

How to distribute containers to browsers?

6 

● Option A: Pre-converting containers to Wasm images

● Option B: Distributing OCI container images to browsers

Copyright(c)2024 NTT Corp. All Rights Reserved.

Option A: Pre-converting containers to Wasm w/ container2wasm

7 

{
 "container.imageLocation": "https://ktock.github.io/image-example/amd64-gcc-debian-wasi",
 "container.imageChunks": 9
}

● An experimental Container to Wasm image
converter

● Pros: container can run on non-browser VM (e.g.
wasmtime) as well

● Cons: Pre-conversion is needed for each container
to run

$ c2w ubuntu:22.04 ubuntu.wasm

https://github.com/ktock/container2wasm

HTTP(S)
server

Browser

container.
imageLocation

upload

Example of .vscode/settings.json

pre-convert to Wasm
by container2wasm

container Wasm

https://github.com/ktock/container2wasm

Copyright(c)2024 NTT Corp. All Rights Reserved.

Option B: Distributing OCI container image to browsers

8 

● Registry needs to allow CORS access
○ But public registries doesn’t allow CORS

as of now
○ Try it on localhost registry with CORS

header configured
■ https://github.com/ktock/container2wasm/blob/v

0.6.2/extras/imagemounter/README.md#example
-on-browser--registry

● Or, upload the container to HTTP(S) server in
OCI Image Layout (files layout of docker
save >= v25)

{"container.containerImage": "localhost:5000/ubuntu:22.04"}

Container registry

{"container.containerImage": "https://ktock.github.io/ubuntu-oci-images/ubuntu-22.04-org-amd64"}

OCI Image Layout over HTTPS

Browser
container.
containerImage

Example of .vscode/settings.json

HTTP
server

container

Upload
(OCI Layout)

Registry
(w/CORS)

Push

https://github.com/opencontainers/image-spec/blob/v1.0.2/image-layout.md

Copyright(c)2024 NTT Corp. All Rights Reserved.

Example: Containers on github.dev

9 

https://github.dev/ktock/vscode-container-wasm-gcc-example?vscode-coi=on

FROM debian:sid-slim
RUN apt-get update && apt-get install -y gcc

● Container image: gcc on Debian

● Workspace mounted at /workspace/

● HTTP(S) networking is available

https://github.dev/ktock/vscode-container-wasm-gcc-example?vscode-coi=on

Copyright(c)2024 NTT Corp. All Rights Reserved.

Demo

10 

● Demo Page
○ https://github.com/ktock/vscode-container-wasm-gcc-example

● vscode-container-wasm Repo
○ https://github.com/ktock/vscode-container-wasm

https://github.com/ktock/vscode-container-wasm-gcc-example
https://github.com/ktock/vscode-container-wasm

Copyright(c)2024 NTT Corp. All Rights Reserved.

How it works

11 

● Container and Linux run inside Wasm VM

● Utilizes CPU emulator
○ Bochs (for x86_64 containers)
○ TinyEMU (for RISC-V containers)

● Uses microsoft/vscode-wasm for Wasm/Wasi host
Host JS code

(w/ vscode-wasm)

vscode-wasm

Linux

Application

Emulator

Web Worker

Wasm

Browser

https://bochs.sourceforge.io/
https://bellard.org/tinyemu/
https://github.com/microsoft/vscode-wasm

Copyright(c)2024 NTT Corp. All Rights Reserved.

How it works: Mounting workspace to containers

12 

● Workspaces are provided as pre-opened
(mapped) dirs to Wasm VM

● Emulator shares pre-opened (mapped) dirs to
the guest via virtio-9p

Host JS code
(w/ vscode-wasm)

vscode-wasm

Linux

Application

Emulator

Web Worker

Wasm

Browser

Preopened
dirs

virtio-9p

9p mount
(trans=virtio)

Copyright(c)2024 NTT Corp. All Rights Reserved.

How it works: Networking

13 

● NW stack + HTTP(S) proxy runs inside
browser

● Forwards HTTP(S) using Fetch API

● Restrictions by Fetch API
○ Accessible sites limited by CORS
○ Forbidden Headers uncontrollable Host JS code (w/ vscode-wasm)

vscode-wasm

Linux

Application

Emulator

Web Worker 1

sock_*

API

virti
o-net

Wasm

JS wrapper

Wasm

HTTP(S) proxy
+ NW stack

sock_*
+extra APIs
 for HTTP

HTTP/HTTPS
(Fetch API)

SharedArray
Buffer

Browser

Packet
HTTP req/resp

 Encapsulates raw packets
with size header

Web Worker 2

https://developer.mozilla.org/en-US/docs/Glossary/Forbidden_header_name

Copyright(c)2024 NTT Corp. All Rights Reserved.

How it works: Pulling containers to browser

14 

● Container is fetched and unpacked
inside browser

● Rootfs is mounted to the guest via 9p

Host JS code (w/ vscode-wasm)

vscode-wasm

Linux

Application

Emulator

Web Worker 1
Wasm

JS wrapper

Wasm

imagemounter:
Fetches and

unpacks image

Browser
Web Worker 2

Fetch image
contents

sock_*
API

virtio-net

Mounts unpacked rootfs
contents via 9p

Enabled only when “Option B”
(Distributing OCI container images
to browsers) is configured

Copyright(c)2024 NTT Corp. All Rights Reserved.

Possible use cases of containers on Wasm

15 

● Interactive on-browser linux-based demo

● On-browser development and testing

● Sandboxed execution environment of containers

● Application debugger runnable on browser

● Record & Replay debugging

● etc…

Copyright(c)2024 NTT Corp. All Rights Reserved.

Related works

16 

VMs on browser
● v86: https://github.com/copy/v86

○ x86-compatible on-browser CPU emulator by Fabian Hemmer
○ Supports wide variety of guest OSes (including Windows)
○ No support for x86_64

● TinyEMU: https://bellard.org/tinyemu/
○ RISC-V and x86 emulator by Fabrice Bellard
○ Can run on browser
○ Container2wasm uses this for RISC-V emulation
○ No support for x86_64

https://github.com/copy/v86
https://bellard.org/tinyemu/

Copyright(c)2024 NTT Corp. All Rights Reserved.

Future works

17 

● Performance analysis & improvement
○ Possible integration with elfconv: https://github.com/yomaytk/elfconv

■ AOT compiler of Linux/aarch64 ELF to Wasm by Masashi
Yoshimura, NTT Corporation

■ Check also 16:00, Feb 4 @ LLVM devroom: “elfconv: AOT compiler
that translates Linux/AArch64 ELF binary to LLVM bitcode targeting
WebAssembly”, by Masashi Yoshimura, NTT Corporation

● Integration of container ecosystem with browsers
○ Accessing OS package repos (e.g. apk, apt, fedora packages, …) from

browser
○ CORS-allowed container registries

● Graphics support

https://github.com/yomaytk/elfconv
https://fosdem.org/2024/schedule/event/fosdem-2024-2254-elfconv-aot-compiler-that-translates-linux-aarch64-elf-binary-to-llvm-bitcode-targeting-webassembly/
https://fosdem.org/2024/schedule/event/fosdem-2024-2254-elfconv-aot-compiler-that-translates-linux-aarch64-elf-binary-to-llvm-bitcode-targeting-webassembly/
https://fosdem.org/2024/schedule/event/fosdem-2024-2254-elfconv-aot-compiler-that-translates-linux-aarch64-elf-binary-to-llvm-bitcode-targeting-webassembly/

Copyright(c)2024 NTT Corp. All Rights Reserved.

Summary

18 

● On-browser VSCode lacks Linux terminal running completely inside
browser

● vscode-container-wasm enables to run Linux-based containers and its
terminal inside browser

● Options for distributing containers to browsers
○ Pre-converting containers to Wasm images
○ Distributing OCI container images to browsers

