

Testing in a Box: Streamlining Embedded Systems Testing

Speaking Today

TITLE

Software Engineer

TENURE

Joined Codethink in 2022

SPECIALTIES

Embedded Systems

EDUCATION

Mechatronics & Robotics University of Leeds

Mudit Sharma

Speaking Today

TITLE

Senior Engineer

TENURE

Joined Codethink in 2017

SPECIALTIES

Linux systems integration Custom Embedded:

- Custom Distributions
- Hardware testing

EDUCATION

University of Brunel Aerospace Engineering

William Salmon

Contents

Introduction - Codethink

- Offering software services for over 15 years
- Mostly related to open source software
- Lots of Automotive and Financial services clients
- Specialize in build and integration of complex systems

Context - Testing

Test early and often

- At Codethink we have testing as a key pillar of our approach
- We try to test as much and as often as possible
- We try to keep cycle times low
- But some things can only be tested on the final system
 - Rig/VM
 - Server
 - Car

Test early and often on infrastructure

As we go to the right we run up against

- Slow Automated tests
- Manual tests
- Expensive tests
- Resource constrained tests

Test early and often for devs

Accurate

- Keep the tests as close to PROD as possible
 - Hardware
 - Peripherals
 - Network

Easy

- Tests should be quick
- Tests should be reproducible / repeatable
- Test should be easy for devs to trigger
- Test should be easy for devs to debug

Testing on hardware

Testing Rigs and Cars

Rig tests in many companies are very MANUAL.

- Things to automate
 - Full rig flash
 - OTA updates
 - UI interactions
 - CAN updates
 - Peripherals
 - Connection actions
 - Peripheral state dependent action

Final requirements

- Cl only rigs
- No way to merge without automatic tests
- Test automation co-ordination
- Ul tests
- Automated hardware control
 - Can transceivers
 - o GPIO
 - Peripheral control

Testing infrastructure

Requirements for testing infrastructure

- Control hardware to run tests on device under test
 - A mini PC or a laptop
- Hardware to test/simulate production application
 - o CAN dongle
 - JTAG
 - Serial
 - o GPIO
 - Custom hardware for niche applications

USB switch

- Bi-directional USB-C switch
- Allow 1 host to switch between 2 peripherals and vice-versa, programmatically
- Open source hardware, firmware and case
- Supports USB Super Speed
- EMC tested and certified
- https://gitlab.com/CodethinkLabs/usb-switch/

Resulting test setup

- Lots of capability
- Bit of a uncontrolled mess
- Very easy for things to get upset
- Not easy to replicate

Considerations for robust testing infrastructure

- Supply chain
 - Can you buy more of this IO hardware in next 5 years?
- Ease of setup
 - How long does it take to setup testing infrastructure for a rig?
- Consistency
 - Will different hardware claiming to do the same thing actually do it consistently?

TIAB Implementation

Hardware overview

- Multitool for testing
- IO supported
 - Serial
 - Optocouplers
 - o GPIO
 - o SPI and I2C
 - HID emulation
 - USB hub
- Modular design for multiple layer stackability and expandability

Hardware overview

- Arm-based SBC as control unit
- USB switch
- CAN modules
- Open source IO board hardware, case, and config

Testing In A Box

- Coordination GitLab + openQA worker
- Rig control
 - Runner, companion computer to the, System Under Test, SUT.
 - QAD 0
 - QAnvas
 - **USB** switch
 - **GPIO**
 - CAN
- System under test

GPIO board

Opto couplers TLP2748

For now Espressif ESP32-s3

Raspberry Pi RP2040

GPIO board

Opto couplers TLP2748

GPIO in future

- FTDI FT232H x3 → FT423-2H x1
- ESP32s3 → the RP2040 does 90% of what we actually used the ESP32 for
- Simpler and cheaper
- A lot less firmware to manage!

Example

Testing in a box software:

- Test Coordinator
- Test Runner
- UI tests Capture

Testing in a box:

- GPIO
- Full Flash
- Peripherals

What else you do get in package?

- Ansible scripts for setting up the control machine:
 - GitLab runner
 - udev rules
 - openQA worker
 - Cl templates
- Ansible to setup a server with pre-installed tests for AGL on a Pi but can be adapted to any system
 - UI tests
 - CAN + UI tests
 - Networking

What's next

- Version 2 for TIAB IO board
- CAN FD expansion board for TIAB
- Much more to come

Get involved:

TIAB group:

https://gitlab.com/CodethinkLabs/testing-in-a-box/

Thank You.

Codethink Ltd.

3rd Floor Dale House, 35 Dale Street, MANCHESTER, M1 2HF, United Kingdom.

