
Henrik Plate (Endor Labs)
Feb 2024

SBOM & VEX
Getting lulled into a

false sense of security

About me

Main interests:

- Detection, assessment and mitigation of known
open source vulns

Co-author of Eclipse Steady and Project KB

- Classification & detection of supply chain attacks

Co-author of Backstabber’s Knife Collection and Risk
Explorer

- Change Impact Analysis and Debloating

Henrik Plate
Security Researcher (Endor Labs)

Previously at SAP
> 10 years on OSS security

Email henrik@endor.ai
LinkedIn henrikplate
Google Scholar

https://eclipse.github.io/steady/
https://github.com/sap/project-kb
https://github.com/cybertier/Backstabbers-Knife-Collection
https://riskexplorer.endorlabs.com/
https://riskexplorer.endorlabs.com/
https://scholar.google.com/citations?user=Kaleo5YAAAAJ

Outline

- Accurate SBOM and VEX documents require linking applications, components
versions, vulnerabilities and vulnerable code

- Structured overview about problems that make those links brittle and weak
- Exemplified by vulnerability information from OSV *

My goals for today: Make you

- take SBOMs and VEX documents with grains of salt,

- choose the right apps for tool evaluations, and

- ask the right questions to SBOM/VEX tool providers.

Vulnerability
Exploitability eXchange (VEX)

VEX documents are distributed as part of an SBOM document, or separately

They assert the [status] of a [product_id] with respect to [vul_id] [1]
- Status MUST be one of [under investigation, not affected, affected, fixed]

[1] CISA: Minimum Requirements for Vulnerability Exploitability eXchange (VEX) (2023)
[2] CycloneDX 1.5: https://cyclonedx.org/docs/1.5/json/#vulnerabilities_items_analysis_justification

For status “not affected”, a VEX statement must provide an impact statement (free text)
or a justification with 5 possible values [1, p.10]:

- Component not present, Vulnerable code not present, Vulnerable code not in
execute path, Vulnerable code cannot be controlled by adversary, Inline mitigations
already exist

CycloneDX schema offers nine possible values for justification [2], e.g.
- Code not present, Code not reachable or Protected at perimeter

https://www.cisa.gov/sites/default/files/2023-04/minimum-requirements-for-vex-508c.pdf

 How to answer those questions?

Application
Code

Component
Version

Vulnerability

Vulnerable
Code*

Is there any
vulnerable code?

Can it run in
my app context?

Can it be exploited
in my app context?

Through manifest files
or other means

Public* and Private
Vulnerability
Databases

(ex. NVD, OSV**)

The Happy Path

Application
Code

Component
Version

Vulnerability

Vulnerable
Code

Manifest File with
Dep Declaration

Single artifact, one
supported release
branch, security
advisories from

maintainers…

Trivial & clean fixes

Call into direct
dependency using

static dispatch

The Happy Path

https://litfl.com/wp-content/uploads/2020/10/streetlight-effect.jpg

Phantom Dependencies

Application

Component
Version

Problem: Manifest files are just one out of many ways to establish
dependencies .

Examples:
- Manual or scripted installation through pip, brew or apt-get

(comparable to provided deps in the Maven world)
- Dynamic installation à la try-except-install

Vulnerability

Vulnerable
Code

Name-changes

Component
Version

Vulnerability

Problems: Project renaming, forking and “exotic” distribution
channels hinder the tracking of vulnerable code and the
enumeration of all affected artifact identifiers.

Example: CVE-2022-1279 in EBICS Java Client
- Originally on SourceForge, continued, renamed and forked on GH
- Components with vulnerable code have 3 different Maven GAs:

- org.kopi:ebics (when building from the sources in
ebics-java/ebics-java-client)

- com.github.ebics-java:ebics-java-client (when consuming
the JAR from JitPack)

- io.github.element36-io:ebics-cli (from a fork, deployed on
Maven Central, not fixed)

- OSV marks the GitHub repo ebics-java/ebics-java-client as affected,
but no Maven GAV

Application

Vulnerable
Code

https://nvd.nist.gov/vuln/detail/CVE-2022-1279
https://github.com/ebics-java/ebics-java-client
https://osv.dev/vulnerability/CVE-2022-1279
https://github.com/ebics-java/ebics-java-client

Multi-module Projects

Component
Version

Vulnerability

Problem:
- Many projects produce multiple artifacts with different registry

identifiers, and vulnerable code may be part of multiple ones.

Examples:
1. CVE-2023-33202 for Bouncycastle crypto library

○ 84 artifacts with groupId org.bouncycastle on Central
○ OSV marks 2 as affected, but the vulnerable class(es)

are contained in 28 artifacts
2. CVE-2023-36566 in Microsoft Common Data Model SDK

○ 4 ecosystems supported from 1 GitHub repo, all affected
○ OSV marks Maven, PyPI and NuGet (but not npm)

Application

Vulnerable
Code

https://github.com/endorlabs/vulnerabilities/blob/main/mvn/CVE-2023-33202.json
https://search.maven.org/search?q=g:org.bouncycastle
https://osv.dev/vulnerability/GHSA-wjxj-5m7g-mg7q
https://search.maven.org/search?q=fc:org.bouncycastle.asn1.DERExternal%20AND%20g:org.bouncycastle
https://nvd.nist.gov/vuln/detail/CVE-2023-36566
https://github.com/microsoft/CDM
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2023-36566
https://osv.dev/vulnerability/GHSA-vm2m-7hpw-fpmq

Multi-module Projects & Rebundling

Component
Version

Vulnerability

Problems:
- Many artifacts comprise code from other projects.

Examples:
1. CVE-2018-1270 in Spring Framework

○ Fixed with e0de91 in DefaultSubscriptionRegistry
○ Comprised in 1 of 58 Spring artifacts:

org.springframework:spring-messaging
○ OSV marks org.springframework:spring-core as affected
○ Class also rebundled in

org.apache.servicemix.bundles:org.apache.servicemix.bundle
s.spring-messaging

Application

Vulnerable
Code

https://nvd.nist.gov/vuln/detail/CVE-2018-1270
https://github.com/spring-projects/spring-framework/commit/e0de9126ed8cf25cf141d3e66420da94e350708
https://osv.dev/vulnerability/GHSA-p5hg-3xm3-gcjg

Rebundling in Java

[1] A Dann, et al.: Identifying Challenges for OSS Vulnerability Scanners - A Study & Test Suite (2021)
[2] https://github.com/CodeShield-Security/Log4JShell-Bytecode-Detector

Background: groupId, artifactId, and version identify an artifact on Central
Example: org.apache.logging.log4j : log4j-core : 2.15.0

- Study [1]: Search for rebundles of 254 known-vulnerable classes from 38
components.

Recompiled Uber-JAR Uber-JAR
(w/o meta)

Repackaged

rebundled classes 143 / 254 222 / 254 222 / 254 17 / 254

distinct GAVs on Central 5,919 36,609 24,500 168

distinct GAs 360 6,728 3,882 89

- Study [2]: 297 GAVs on Maven Central rebundle vulnerable log4j-core classes

https://www.bodden.de/pubs/dph+21identifying.pdf

Rebundling in Python

Examples:
1. CVE-2023-4863 in libwebp (WebP image codec)

○ Rebundled in 50 Python packages [1]
○ OSV covers 6

[1] Seth Larson: Patching the libwebp vulnerability across the Python ecosystem (2023)

2. azure-functions 1.18.0
○ Rebundles werkzeug and a single

Python file from GitHub

Top rebundled binaries in PyPI [1]

Rebundled code in azure-functions 1.18.0

https://nvd.nist.gov/vuln/detail/CVE-2023-4863
https://osv.dev/vulnerability/CVE-2023-4863
https://sethmlarson.dev/security-developer-in-residence-weekly-report-16
https://pypi.org/project/azure-functions/1.18.0/

Rebundling in JavaScript [1]

[1] J Rack, et al.: Jack-in-the-box: An Empirical Study of JavaScript Bundling on the Web and its Security Implications (CCS, 2023)

https://publications.cispa.saarland/4036/1/Bundlers_Study_Submission-camera-ready.pdf

Component Confusion Stats

For Maven, OSV and Endor Labs …

- Agree for 57% of vulns on affected
components (groupId:artifactId)

- Differ for 43% of vulns

Differences lead to FPs and FNs:

- For 11%, Endor Labs marks one
additional GA as affected

- For 2%, OSV marks one additional GA
as affected

Confusion of Affected Versions

Component
Version

Vulnerability

Vulnerable
Code

Problems: Identifying affected versions is mostly manual work, not
done by project maintainers for EOL versions, and error-prone due
to communication mishaps.

Examples:

1. CVE-2023-41080 in Apache Tomcat
○ 8.0.x reached EOL → not checked or fixed by project maintainers
○ The vulnerable function exists as-is since 5.5.23
○ OSV marks releases as of 8.5.x as affected

2. CVE-2023-50164 in Apache Struts
○ Official advisory marks EOL versions 2.0.0 - 2.3.7 as affected
○ Vulnerable function did not exist, but exploit worked as-is
○ OSV marked 2.5.0 and later

Application

https://nvd.nist.gov/vuln/detail/CVE-2023-41080
https://tomcat.apache.org/security-8.html
https://github.com/apache/tomcat/commit/4998ad745b67edeadefe541c94ed029b53933d3b
https://osv.dev/vulnerability/GHSA-q3mw-pvr8-9ggc
https://nvd.nist.gov/vuln/detail/CVE-2023-50164
https://cwiki.apache.org/confluence/display/WW/S2-066

High-touch Maintenance

1st correction submitted & merged (affected: 5.8.22 - 5.8.24, fixed: none)

Hutool v5.8.25 released on Central → Fixed or not, how do tools interpret GHAD/OSV data?

CVE-2023-51080 in Hutool, published to NVD and GHAD (unreviewed)

Jan 3, 2024

Dec 27, 2023

Jan 5 → 9

Jan 11

Jan 30 → 31

Reviewed & published by GHAD (affected: 0 - 5.8.23, fixed: 5.8.24)

2nd correction submitted & merged (affected: 5.8.22 - 5.8.24, fixed: 5.8.25)

https://github.com/github/advisory-database/pull/3268
https://search.maven.org/artifact/cn.hutool/hutool-core
https://nvd.nist.gov/vuln/detail/CVE-2023-51080
https://github.com/advisories/GHSA-m5hf-m3r2-xq53
https://github.com/github/advisory-database/pull/3453

Non-trivial Fix Commits

Component
Version

Vulnerability

Vulnerable
Code

Problem: The identification of vulnerable code is difficult if fixes
comprise many commits, potentially for different release branches,
and if they are “polluted” with unrelated changes.

Example: CVE-2020-35662 in SaltStack Salt
- 18 fix commits
- 14 functions modified to validate SSL certs

Application

https://nvd.nist.gov/vuln/detail/CVE-2020-35662

Cabinet Of Challenges
(without any claim to completeness)

Application
Code

Component
Version

Vulnerability

Vulnerable
Code*

- Phantom dependencies
(not established through
manifest files)

- Vendored Code *
(copied into own repo)

- Component Confusion
(e.g., forks, multi-module projects,
name changes upon distribution,
rebundling)

- Confusion of Affected Versions

- Non-trivial Fix Commits

- Different naming schemes and
granularities ** (eg. CPE and GAV)

- Reflection, eval etc.

- Inversion of Control

- Configuration vulnerabilities

- Cross-language calls

- Megamorphic call sites
(dynamic dispatch w/ base types)

Take-aways

When talking to your local SCA dealer:

- Do not (only) choose happy-path apps for product evaluations
- Ask for implementation details & statistics regarding the 3 critical areas

(dependency identification, vuln. database, and reachability analysis)

Status-quo

- Brittle links between apps and vulnerable code
- High quality vulnerability databases require significant manual work

Opportunities:

- Comprehensive, code-level open-source vulnerability database
- Reliable way to identify vulnerable code, no matter where it is contained

Thank you!

Email henrik@endor.ai
LinkedIn henrikplate

