
1

Strategic Sampling: Architectural
Approaches to Efficient
Telemetry
Fosdem 2024

2

Benedikt Bongartz
Senior Software Engineer
Red Hat

 frzifus

 frzifus:matrix.org

About

Julius Hinze
Software Engineer
Cisco

 juliusmh

3

● OpenTelemetry in a Nutshell

● Sampling in OpenTelemetry

○ What does it mean and why is it important?

○ Comparing Sampling Approaches

● Challenges of Sampling

○ Connection handling

○ How to survive unpredictable load? - (Auto) scaling

● Conclusion

● Q&A Session

Agenda

4

● Open source!

● Cloud Native Computing Foundation (CNCF)

● Vendor neutral telemetry data collection

● Telemetry = Traces + Metrics + Logs

● Specification, API, SDK, data model - OTLP, auto-instrumentation, collector

● Helm chart, Kubernetes operator

OpenTelemetry in a Nutshell

5

Introduction Tracing

https://henesgokdag.medium.com/distributed-tracing-9300d55e7245

6
https://opentelemetry.io/docs/concepts/sampling/

Sampling

https://opentelemetry.io/docs/concepts/sampling/

7

● Setup (production environment, telco workloads)

○ ~30 Microservices, ~110 Nodes, ~2350 Pods, ~940 CPU

● Calculated cost with 100% sampling

○ 1.100.000 traces/min → 1.100.000 * 60 * 24 * 30 * 100% = 47.500.200.000

○ = 237.600 $ (27.01.2024, region=eu-west-1)

● Calculated cost with 0.1% sampling

○ 1.100.000 traces/min → 1.100.000 * 60 * 24 * 30 * 0.1% = 4.752.000.000

○ = 237 $ (27.01.2024, region=eu-west-1)

● How can we choose the 0.1% ?

Example: AWS XRay cost

https://calculator.aws/#/createCalculator/xray

https://calculator.aws/#/createCalculator/xray

8

● Sampling decision is made at the beginning of a trace

● Efficient, Easy to understand and to configure

● Common available options (more):

○ Parent-based

○ Probability

● SDK needs to be configured

○ Manually e.g. via environment variables

○ Jaeger Remote Sampling extension (docs)

● Alternative Probabilistic sampler processor (docs)

Head-based sampling

https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/extension/jaegerremotesampling
https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/processor/probabilisticsamplerprocessor

9

● Sampling decision is made at the

end of a trace

● The decision maker needs to be

aware of all spans of a trace

● Allows complex policies

● Consumes extra resources

● Use tail-based sampling when you

want to investigate rare or

extreme cases that might have

significant impact or need special

attention

Tail-based sampling

https://opentelemetry.io/docs/concepts/sampling#tail-sampling

https://opentelemetry.io/docs/concepts/sampling#tail-sampling

10

Tail-based sampling

● Calculated cost telo/xray setup - 1.1 Mio traces per Minute

○ 100% sampling => 237.600 $

○ 0.1% sampling => 237 $ + (sampling cost)

● Sampling resource cost

○ (Cluster resource limits 15000Mi + 6500m CPU)

○ Single Instance example

■ Type: t2.xlarge per H: 0,1856 USD Cores: 4 Mem: 16 GiB

● Xray(237 $) + t2.xlarge(133 $) = 370 $

■ Type: t2.2xlarge per H: 0,3712 USD Cores: 8 Mem: 32 GiB

● Xray(237 $) + t2.2xlarge(267 $) = 504 $

How to apply Tail-based sampling
using the OpenTelemetry Collector

Cluster 1

Tail.

Service 4

Service 3

sampling-col-1

Service 2

Service 1

TraceID 1

Tail-based sampling

sampled

12

13

apiVersion: opentelemetry.io/v1alpha1
kind: OpenTelemetryCollector
metadata:
 name: sampling-col
spec:
 mode: deployment
 replicas: 5
 resources: ...
 config: |
 receivers:
 otlp:
 processors:
 memory_limiter: ...
 batch/traces: ...
 tail_sampling: ...
 exporters:
 otlp/tempo: ...
 service:
 pipelines:
 traces:
 receivers: [otlp]
 processors: [memory_limiter, batch/traces, tail_sampling]
 exporters: [otlp/tempo]

 tail_sampling:
 decision_wait: 10s
 num_traces: 100000
 # expected_new_traces_per_sec: 5000
 policies:
 - name: policy-errors-retain
 type: status_code
 status_code: {status_codes: [ERROR]}
 - name: policy-probabilistic
 type: probabilistic
 probabilistic:
 sampling_percentage: 10

Multiple policies exist today: (docs)

resources:
 requests:
 memory: "3000Mi"
 cpu: "1300m"
 limits:
 memory: "3000Mi"
 cpu: "1300m"

Tail-based sampling

https://github.com/open-telemetry/opentelemetry-collector-contrib/blob/46ad449d48d426de33ea6685df6f54b89df07a87/processor/tailsamplingprocessor/README.md

Cluster 1

Tailsampler
(replicas=2)

Service 4

Service 3

sampling-col-1

Service 2

Service 1

not sampled

TraceID 1

sampling-col-2
?

Tail-based sampling

sampled

14

Scaling out
Layered collectors

Tail-based sampling: load balancing

Tail.

Service 4

Service 3

telemetry-lb-1

Service 2

Service 1

Route by
traceID

Optionally, we can generate RED metrics before dropping traces.

TraceID 1 TraceID 2

…

LB

16

https://github.com/open-telemetry/opentelemetry-collector-contrib/blob/46ad449d48d426de33ea6685df6f54b89df07a87/processor/spanmetricsprocessor/README.md

Tail-based sampling: load balancing

Tail.

Service 4

Service 3

telemetry-lb-1

Service 2

Service 1

Route by
traceID

Optionally, we can generate RED metrics before dropping traces.

TraceID 1 TraceID 2

…

telemetry-lb-2

LB

17

https://github.com/open-telemetry/opentelemetry-collector-contrib/blob/46ad449d48d426de33ea6685df6f54b89df07a87/processor/spanmetricsprocessor/README.md

18

Load-balancing exporter

● Resolver

○ Find upstream collectors

○ Supported: DNS, k8s service, static

backends

● Protocol

○ used to send traces/metrics/logs

upstream

● Routing key + consistent hash ring

Tail.

telemetry-lb-1

routing_key +
protocol

telemetry-lb-2

Loadbalancing-
exporters

resolver

19

Load-balancing exporter

apiVersion: opentelemetry.io/v1alpha1
kind: OpenTelemetryCollector
metadata:
 name: telemetry-lb
spec:
 mode: deployment
 replicas: 2
 config: |
 exporters:
 loadbalancing:
 routingKey: traceID
 protocol:
 otlp:
 sending_queue:
 queue_size: 4000
 resolver:
 dns:
 hostname: telemetry-collector-headless.telemetry.svc.cluster.local
 port: 4317
 service:
 pipelines:
 traces:
 exporters: [loadbalancing]

 resolver:
 k8s:
 service: lb-svc.kube-public
 ports:
 - 15317
 - 16317
 resolver:
 static:
 hostnames:
 - backend-1:4317
 - backend-2:4317
 - backend-3:4317
 - backend-4:4317

Problem solved?

21

● LBs only work if exporting is faster than receiving

● Very sensitive to upstream problems

● But, easy to spot and debug:
○ otelcol_exporter_queue_capacity

○ otelcol_exporter_queue_size

○ otelcol_loadbalancer_backend_latency

Challenges

https://opentelemetry.io/docs/collector/scaling/#when-to-scale

https://opentelemetry.io/docs/collector/scaling/#when-to-scale

22

Queue Size?

https://opentelemetry.io/docs/collector/scaling/

Tailsamplers

LBs

Queued traces

Queue
capacity

https://opentelemetry.io/docs/collector/scaling/

23

● How to lb the LBs?

● K8s LB (L4)? doesn’t handle gRPC well

● use otlphttp instead? Less efficient

● use L7 lb, e.g. envoy?

● Deploy in sidecar mode?

LB inception

24

● Doesn’t exist (yet)

● Save resources when traffic is low

● Resolvers not “termination aware”

● Errors appear during bursts

Auto-scaling? Received spans

Rate of SMS sent

25

Auto-scaling? ideas…

Tail.

telemetry-lb-1

telemetry-lb-2

lb

ListTopics()

kafka-cluster

traces/pod-1

traces/pod-2

CreateTopic()

kafkareceiverProtocol: kafka
(topic=X)

26

Auto-scaling? ideas…

● Simple PoC in ~500 LOC (most of it copy

pasta)

● Kafkaresolver

○ ListTopics with prefix, every n seconds

● Protocol: kafka

○ Recycle kafkaexporter factory

● Kafkareceiver

○ Create topic on Start()

resolver:
 kafka:
 brokers:
 - kafka:9092
 protocol_version: 2.0.0
 timeout: 5s
 topic_prefix: otel-pod-

protocol:
 kafka:
 brokers:
 - kafka:9092
 protocol_version: 2.0.0
 encoding: otlp_proto

receivers:
 kafka:
 brokers:
 - kafka:9092
 metadata:
 full: true
 protocol_version: 2.0.0
 topic: otel-pod-1
 create_topic: true
 encoding: otlp_proto

27

Auto-scaling? ideas…

Conclusion

29

● Traces are valuable for understanding system behavior

○ But storing all traces is costly

● Head/tail sampling can reduce trace volume and focus on important data

○ Cost is a significant factor in trace management

● Tail-based sampling configurations can be complex

● Load balancing can help manage high traffic loads in trace systems

● Easy to implement customized solutions on top of OTEL

Conclusion

Thank you

30

Benedikt Bongartz
@frzifus

Julius Hinze

@juliusmh

