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Disclaimer(s)
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We won't cover everything
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Content is applicable to

currently supported versions
of PostgreSQL (12+]

[and most of it for 9.6+]
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E Server/Host (Firewall, Ports)

Port: 5432 Port: 5433 Port: 5434
pg_hba.conf pg_hba.conf pg_hba.conf




Cluster

Databases

ROLES

\\







pg_hba.conf

 First layer of authentication
» Similarto a firewall ruleset for PostgreSQL

* Cloud vendors largely manage this for you

Which hosts & roles, can connect to what databases,
using what authentication method?
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# Allow any user on the local system to connect to any database with
# any database user name using Unix—-domain sockets (the default for local
# connections).

H
# TYPE DATABASE USER ADDRESS METHOD
local all all trust

# The same using local loopback TCP/IP connections.

H#
# TYPE DATABASE USER ADDRESS METHOD
host all all 127.0.0.1/32 trust

# Allow any user from host 192.168.12.10 to connect to database
# "postgres" if the user's password is correctly supplied.

&
# TYPE DATABASE USER ADDRESS METHOD
host postgres all 192.168.12.10/32 scram—-sha-256

https://www.postgresgl.org/docs/current/auth-pg-hba-conf.html



https://www.postgresql.org/docs/current/auth-pg-hba-conf.html

Avoid using TRUST
method at all costs!*

*(can be useful for local development machines... but still...]
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Use scram-sha-256 for
password authentication
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Roles

 Own databases, schemas, and objects

« Tables, Functions, Views, Etc. g
« Have cluster-level privileges (attributes)
» Granted privileges to databases, schemas, and
objects

» Can possibly grant privileges to other roles

=] redgate



Users and Groups

« Semantically the same as roles

« By Convention:
User = LOGIN
Group = NOLOGIN

« PostgreSQL 8.2+ CREATE (USER|GROUP) is an
alias
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Role Attributes

* Predefined settings that can be enabled/disabled
for a givenrole

 Essentially cluster-level (non-database) privileges

« Maptocolumnsinpg_catalog.pg_roles
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PostgreSQL 15 Attributes

LOGIN PASSWORD
SUPERUSER INHERIT
CREATEROLE BYPASSRLS
CREATEDB CONNECTION LIMIT

REPLICATION LOGIN
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Unless otherwise set, new
roles can INHERIT privileges
from other roles and have
unlimited connections
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Role Specific Session Settings
* Roles can set role-specific defaults for run-time

configuration at connection time

* Any settings that can be set via SET command can
be altered for a ROLE

ALTER ROLE userl SET jit TO off;

ALTER ROLE userl RESET jit;
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PostgreSQL Superuser
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https://creativecommons.org/licenses/by-nc-nd/3.0/

PostgreSQL Superuser

W oa
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PostgreSQL Superuser

* gais created by default when the cluster is initialized

» Typically named postgres because the system
process user initiates a 1nitdb

» Bypasses all security checks except LOGIN

 Full privilege to do "anything’

 Treat superuser with care (like root on Linux)
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Most cloud providers do not
provide superuser access
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Superuser-like




Superuser-like

Create a role with the right level of control

Recommend adding CREATEROLE and CREATEDB

Allows user management and database ownership

May still limit some actions (e.g. installing
extensions limited to superuser)
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Privileges
* The set of access rights to databases, schemas,

and objects

« Can be granted (GRANT) or revoked (REVOKE) by a
role with authority

* Explicit GRANT or REVOKE only impacts existing
objects
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PostgreSQL 15 Privileges

SELECT

UP
DE
TR
RE
TR

NSERT

DATE

LETE
UNCATE
FERENCES

GGER

CREATE
CONNECT

TEMPORARY

EXECUTE

USAGE
SET
ALTER SYSTEM
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PUBLIC Role

* Allroles are granted implicit membership to PUBLIC
» The public role cannot be deleted

 Granted CONNECT, USAGE, TEMPORARY, and EXECUTE
by default

 <=PG14: CREATE on the public schema by default
 >=PG15: No CREATE on public schema by default

=] redgate



Security Best Practice for PUBLIC

» Revoke all privileges on the public schema from the
PUBLIC role

* Revoke all database privileges from the PUBLIC
role (maybe)

REVOKE ALL ON SCHEMA public FROM PUBLIC;
REVOKE ALL ON DATABASE db name FROM PUBLIC;
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Granting Privileges

-—- grant the ability to create a schema
GRANT CREATE ON DATABASE app db TO adminl;

-—- see and create objects i1n schema
GRANT USAGE,CREATE IN SCHEMA demo app TO devl;

-- allow some roles only some privileges
GRANT SELECT , INSERT,6 UPDATE
ON ALL TABLES IN SCHEMA demo app TO jr dev;
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Granting Privileges

 Remember, explicit grants only effect existing
database objects!

-- This will only grant to existing objects
GRANT ALL TO ALL TABLES IN SCHEMA public TO devl;
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More Detail on GRANT and REVOKE

What the privileges mean:

https://www.postgresqgl.org/docs/current/ddl-priv.html

How to GRANT privileges:

https://www.postgresqgl.org/docs/current/sql-grant.html

How to REVOKE privileges:

https://www.postgresqgl.org/docs/current/sql-revoke.html
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https://www.postgresql.org/docs/current/sql-grant.html
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Inheritance
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Privilege Inheritance

* Roles can be granted membership into another role

* If arole has INHERIT set, they automatically have
usage of privileges from member roles

* The preferred method for managing group privileges
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Granting Privileges
. . aS

CREATE ROLE sr dev WITH|LOGIN|password='abc' INHERIT;
CREATE ROLE rptusr WITH|LOGIN|password='123' INHERIT;

CREATE ROLE admin WITH LOGIN NOINHERIT,

CREATE ROLE ropriv WITH NOLOGIN|N ; x%z
()

GRANT INSERT,UPDATE,DELETE ON ALL TABLES

IN SCHEMA app TO admin;
GRANT SELECT ON ALL TABLES IN SCHEMA app TO ropriv;

GRANT admin,ropriv TO sr dev;
GRANT ropriv TO rptusr;
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Table access on "app’ schema

rptusr

daah

SELECT SELECT

A




Table access on "app’ schema

/xzz. ropriv / :"‘l;; admin N

rptusr sr_dev
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SELECT \ SELECT, INSERT,
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Object Ownership

* Object creator = owner

* Owneris a "superuser’ of the objects they own

» Initial object access = Principle of Least Privilege

* RO

obj

Unless specifically granted ahead of time, objects are owned
and "accessible” by the creator/superuser only

es can specify default privileges to GRANT for each

ect type that they create
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Default Privileges

ALTER DEFAULT PRIVILEGES
GRANT SELECT ON TABLES TO public;

cituscon=> \ddp
Default access privileges
Schema | Type | Access privileges

| table | =r/postgres

| | postgres=arwdDxt/postgres

5] redgate



Providing Object Access

-

Option 1: (owner)
Explicitly GRANT access
after object creation

~

&

/Option 3:

SET ROLE to app role
before creation with

J
~

/Option 2: (owner)

ALTER DEFAULT
PRIVILEGES

correct default privileges

\_ )

"

~

/Option 4: (PG14+)
Use pg_read_all_data
or pg_write_all_data

predefined roles

\_

J
~

)




Object Ownership Security

« CREATE OR REPLACE doesn't change ownership

» Security issue with users that have create
permissions (particularly the public schema)

« PostgreSQL 15 removes default create permissions
from PUBLIC on the public schema
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DEMO
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Predefined Roles

* Cluster-level roles that can be granted

« Work starting in PostgreSQL 14+ to simplify
privilege management

+ pg_read_all_data (for example)

 |f arole that has CONNECT to a database, they can SELECT
from all tables
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Table 22.1. Predefined Roles

Role

pg_read_all_data

pg_write_all_data

pg_read_all_settings
pg_read_all_stats
pg_stat_scan_tables
pg_monitor
pg_database_owner
pg_signal_backend
pg_read_server_files
pg_write_server_files
pg_execute_server_program

pg_checkpoint

pg_use_reserved_connections

pg_create_subscription

Allowed Access

Read all data (tables, views, sequences), as if having SELECT rights on those objects, and USAGE rights on all schemas, even without having it explicitly. This role does
not have the role attribute BYPASSRLS set. If RLS is being used, an administrator may wish to set BYPASSRLS on roles which this role is GRANTed to.

Write all data (tables, views, sequences), as if having INSERT, UPDATE, and DELETE rights on those objects, and USAGE rights on all schemas, even without having it
explicitly. This role does not have the role attribute BYPASSRLS set. If RLS is being used, an administrator may wish to set BYPASSRLS an roles which this role is
GRANTed to.

Read all configuration variables, even those normally visible only to superusers.

Read all pg_stat_* views and use various statistics related extensions, even those normally visible only to superusers.

Execute monitoring functions that may take ACCESS SHARE locks on tables, potentially for a long time.

Read/execute various monitoring views and functions. This role is a member of pg_read all settings, pg read all stats and pg stat scan_tables.
None. Membership consists, implicitly, of the current database owner.

Signal another backend to cancel a query ar terminate its session.

Allow reading files from any location the database can access on the server with COPY and other file-access functions.

Allow writing to files in any location the database can access on the server with COPY and other file-access functions.

Allow executing programs on the database server as the user the database runs as with COPY and other functions which allow executing a server-side program.
Allow executing the CHECKPOINT command.

Allow use of connection slots reserved via reserved_connections.

Allow users with CREATE permission on the database to issue CREATE SUBSCRIPTION.

https://www.postqgresgl.org/docs/current/predefined-roles.html



https://www.postgresql.org/docs/current/predefined-roles.html

What Questions do you have?
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- THANKYOU! ¢

github.com/ryanbooz/presentations
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