S] redgate

For Your Eyes Only:
Roles, Privileges, and
Security in PostgreSQL

&
Ryan Booz
& FOSDEM Postgres Devroom 2024 o O
% C
Q Q Q S
Co o 95 0 0 o L, a S O OO
O 0 0 o O
OO o Y Y 5 U U g 4 & O O
O 0@ 0o , o 0o Bo- O A S

=] redgate | About me

Ryan Booz

PostgreSQL & DevOps
Advocate

Y (@ryanbooz
m /in/ryanbooz

g www.softwareandbooz.com

€ voutube.com/@ryanbooz
0 Ou 8 O

a O 8 Q0

I W B A A\ 0/\ N A\

https://twitter.com/ryanbooz
https://www.linkedin.com/in/ryanbooz/
http://www.softwareandbooz.com/
https://twitter.com/ryanbooz

github.com/ryanbooz/presentations

S] redgate

Agendo

01 The Building Blocks
02 Roles

03 Special Roles

OY Privileges

05 Inheritance

06 Object Ownership
O/ Predefined Roles

=] redgate

Disclaimer(s)

S] redgate

We won't cover everything

=] redgate

Content is applicable to

currently supported versions
of PostgreSQL (12+]

[and most of it for 9.6+]
5] redgate

01/07
The Building Blocks

=] redgate

E Server/Host (Firewall, Ports)

Port: 5432 Port: 5433 Port: 5434
pg_hba.conf pg_hba.conf pg_hba.conf

Cluster

Databases

ROLES

\\

pg_hba.conf

 First layer of authentication
» Similarto a firewall ruleset for PostgreSQL

* Cloud vendors largely manage this for you

Which hosts & roles, can connect to what databases,
using what authentication method?

=] redgate

Allow any user on the local system to connect to any database with
any database user name using Unix—-domain sockets (the default for local
connections).

H
TYPE DATABASE USER ADDRESS METHOD
local all all trust

The same using local loopback TCP/IP connections.

H#
TYPE DATABASE USER ADDRESS METHOD
host all all 127.0.0.1/32 trust

Allow any user from host 192.168.12.10 to connect to database
"postgres" if the user's password is correctly supplied.

&
TYPE DATABASE USER ADDRESS METHOD
host postgres all 192.168.12.10/32 scram—-sha-256

https://www.postgresgl.org/docs/current/auth-pg-hba-conf.html

https://www.postgresql.org/docs/current/auth-pg-hba-conf.html

Avoid using TRUST
method at all costs!*

*(can be useful for local development machines... but still...]

5] redgate

Use scram-sha-256 for
password authentication

=] redgate

02/07
Roles

=] redgate

Roles

 Own databases, schemas, and objects

« Tables, Functions, Views, Etc. g
« Have cluster-level privileges (attributes)
» Granted privileges to databases, schemas, and
objects

» Can possibly grant privileges to other roles

=] redgate

Users and Groups

« Semantically the same as roles

« By Convention:
User = LOGIN
Group = NOLOGIN

« PostgreSQL 8.2+ CREATE (USER|GROUP) is an
alias

5] redgate

Role Attributes

* Predefined settings that can be enabled/disabled
for a givenrole

 Essentially cluster-level (non-database) privileges

« Maptocolumnsinpg_catalog.pg_roles

5] redgate

PostgreSQL 15 Attributes

LOGIN PASSWORD
SUPERUSER INHERIT
CREATEROLE BYPASSRLS
CREATEDB CONNECTION LIMIT

REPLICATION LOGIN
5] redgate

Unless otherwise set, new
roles can INHERIT privileges
from other roles and have
unlimited connections

=] redgate

Role Specific Session Settings
* Roles can set role-specific defaults for run-time

configuration at connection time

* Any settings that can be set via SET command can
be altered for a ROLE

ALTER ROLE userl SET jit TO off;

ALTER ROLE userl RESET jit;

=] redgate

03/07
Special Roles

=] redgate

PostgreSQL Superuser

K
-
Sy —

-

his Photo by Unknown Author is licensed under CC BY-NC-ND

=] redgate

https://www.rickchung.com/2018/12/spider-verse-movie-review.html
https://creativecommons.org/licenses/by-nc-nd/3.0/

PostgreSQL Superuser

W oa

=] redgate

PostgreSQL Superuser

* gais created by default when the cluster is initialized

» Typically named postgres because the system
process user initiates a 1nitdb

» Bypasses all security checks except LOGIN

 Full privilege to do "anything’

 Treat superuser with care (like root on Linux)

5] redgate

Most cloud providers do not
provide superuser access

=] redgate

Superuser-like

Superuser-like

Create a role with the right level of control

Recommend adding CREATEROLE and CREATEDB

Allows user management and database ownership

May still limit some actions (e.g. installing
extensions limited to superuser)

5] redgate

04/07
Privileges

=] redgate

Privileges
* The set of access rights to databases, schemas,

and objects

« Can be granted (GRANT) or revoked (REVOKE) by a
role with authority

* Explicit GRANT or REVOKE only impacts existing
objects

=] redgate

PostgreSQL 15 Privileges

SELECT

UP
DE
TR
RE
TR

NSERT

DATE

LETE
UNCATE
FERENCES

GGER

CREATE
CONNECT

TEMPORARY

EXECUTE

USAGE
SET
ALTER SYSTEM

5] redgate

PUBLIC Role

* Allroles are granted implicit membership to PUBLIC
» The public role cannot be deleted

 Granted CONNECT, USAGE, TEMPORARY, and EXECUTE
by default

 <=PG14: CREATE on the public schema by default
 >=PG15: No CREATE on public schema by default

=] redgate

Security Best Practice for PUBLIC

» Revoke all privileges on the public schema from the
PUBLIC role

* Revoke all database privileges from the PUBLIC
role (maybe)

REVOKE ALL ON SCHEMA public FROM PUBLIC;
REVOKE ALL ON DATABASE db name FROM PUBLIC;

=] redgate

Granting Privileges

-—- grant the ability to create a schema
GRANT CREATE ON DATABASE app db TO adminl;

-—- see and create objects i1n schema
GRANT USAGE,CREATE IN SCHEMA demo app TO devl;

-- allow some roles only some privileges
GRANT SELECT , INSERT,6 UPDATE
ON ALL TABLES IN SCHEMA demo app TO jr dev;

5] redgate

Granting Privileges

 Remember, explicit grants only effect existing
database objects!

-- This will only grant to existing objects
GRANT ALL TO ALL TABLES IN SCHEMA public TO devl;

5] redgate

More Detail on GRANT and REVOKE

What the privileges mean:

https://www.postgresqgl.org/docs/current/ddl-priv.html

How to GRANT privileges:

https://www.postgresqgl.org/docs/current/sql-grant.html

How to REVOKE privileges:

https://www.postgresqgl.org/docs/current/sql-revoke.html

=] redgate

https://www.postgresql.org/docs/current/ddl-priv.html
https://www.postgresql.org/docs/current/sql-grant.html
https://www.postgresql.org/docs/current/sql-revoke.html

05/07
Inheritance

=] redgate

Privilege Inheritance

* Roles can be granted membership into another role

* If arole has INHERIT set, they automatically have
usage of privileges from member roles

* The preferred method for managing group privileges

=] redgate

Granting Privileges
. . aS

CREATE ROLE sr dev WITH|LOGIN|password='abc' INHERIT;
CREATE ROLE rptusr WITH|LOGIN|password='123' INHERIT;

CREATE ROLE admin WITH LOGIN NOINHERIT,

CREATE ROLE ropriv WITH NOLOGIN|N ; x%z
()

GRANT INSERT,UPDATE,DELETE ON ALL TABLES

IN SCHEMA app TO admin;
GRANT SELECT ON ALL TABLES IN SCHEMA app TO ropriv;

GRANT admin,ropriv TO sr dev;
GRANT ropriv TO rptusr;

=] redgate

Table access on "app’ schema

rptusr

daah

SELECT SELECT

A

Table access on "app’ schema

/xzz. ropriv / :"‘l;; admin N

rptusr sr_dev

F Y a
SELECT \ SELECT, INSERT,

UPDATE, DELETE /J

A

06/07
Object Ownership

=] redgate

Object Ownership

* Object creator = owner

* Owneris a "superuser’ of the objects they own

» Initial object access = Principle of Least Privilege

* RO

obj

Unless specifically granted ahead of time, objects are owned
and "accessible” by the creator/superuser only

es can specify default privileges to GRANT for each

ect type that they create

=] redgate

Default Privileges

ALTER DEFAULT PRIVILEGES
GRANT SELECT ON TABLES TO public;

cituscon=> \ddp
Default access privileges
Schema | Type | Access privileges

| table | =r/postgres

| | postgres=arwdDxt/postgres

5] redgate

Providing Object Access

-

Option 1: (owner)
Explicitly GRANT access
after object creation

~

&

/Option 3:

SET ROLE to app role
before creation with

J
~

/Option 2: (owner)

ALTER DEFAULT
PRIVILEGES

correct default privileges

_)

"

~

/Option 4: (PG14+)
Use pg_read_all_data
or pg_write_all_data

predefined roles

_

J
~

)

Object Ownership Security

« CREATE OR REPLACE doesn't change ownership

» Security issue with users that have create
permissions (particularly the public schema)

« PostgreSQL 15 removes default create permissions
from PUBLIC on the public schema

5] redgate

DEMO

=] redgate

07/07
Predefined Roles

=] redgate

Predefined Roles

* Cluster-level roles that can be granted

« Work starting in PostgreSQL 14+ to simplify
privilege management

+ pg_read_all_data (for example)

 |f arole that has CONNECT to a database, they can SELECT
from all tables

5] redgate

Table 22.1. Predefined Roles

Role

pg_read_all_data

pg_write_all_data

pg_read_all_settings
pg_read_all_stats
pg_stat_scan_tables
pg_monitor
pg_database_owner
pg_signal_backend
pg_read_server_files
pg_write_server_files
pg_execute_server_program

pg_checkpoint

pg_use_reserved_connections

pg_create_subscription

Allowed Access

Read all data (tables, views, sequences), as if having SELECT rights on those objects, and USAGE rights on all schemas, even without having it explicitly. This role does
not have the role attribute BYPASSRLS set. If RLS is being used, an administrator may wish to set BYPASSRLS on roles which this role is GRANTed to.

Write all data (tables, views, sequences), as if having INSERT, UPDATE, and DELETE rights on those objects, and USAGE rights on all schemas, even without having it
explicitly. This role does not have the role attribute BYPASSRLS set. If RLS is being used, an administrator may wish to set BYPASSRLS an roles which this role is
GRANTed to.

Read all configuration variables, even those normally visible only to superusers.

Read all pg_stat_* views and use various statistics related extensions, even those normally visible only to superusers.

Execute monitoring functions that may take ACCESS SHARE locks on tables, potentially for a long time.

Read/execute various monitoring views and functions. This role is a member of pg_read all settings, pg read all stats and pg stat scan_tables.
None. Membership consists, implicitly, of the current database owner.

Signal another backend to cancel a query ar terminate its session.

Allow reading files from any location the database can access on the server with COPY and other file-access functions.

Allow writing to files in any location the database can access on the server with COPY and other file-access functions.

Allow executing programs on the database server as the user the database runs as with COPY and other functions which allow executing a server-side program.
Allow executing the CHECKPOINT command.

Allow use of connection slots reserved via reserved_connections.

Allow users with CREATE permission on the database to issue CREATE SUBSCRIPTION.

https://www.postqgresgl.org/docs/current/predefined-roles.html

https://www.postgresql.org/docs/current/predefined-roles.html

What Questions do you have?

S] redgate

- THANKYOU! ¢

github.com/ryanbooz/presentations

S] redgate

	Intro slide
	Slide 1
	Slide 2
	Slide 3: github.com/ryanbooz/presentations
	Slide 4: Agenda
	Slide 5: Disclaimer(s)
	Slide 6: We won't cover everything
	Slide 7: Content is applicable to currently supported versions of PostgreSQL (12+)
	Slide 8
	Slide 9: 01/07 The Building Blocks
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: pg_hba.conf
	Slide 15
	Slide 16: Avoid using 'TRUST' method at all costs!*
	Slide 17: Use scram-sha-256 for password authentication
	Slide 18: 02/07 Roles
	Slide 19
	Slide 20: Roles
	Slide 21: Users and Groups
	Slide 22
	Slide 23: Role Attributes
	Slide 24: PostgreSQL 15 Attributes
	Slide 25: Unless otherwise set, new roles can INHERIT privileges from other roles and have unlimited connections
	Slide 26: Role Specific Session Settings
	Slide 27: 03/07 Special Roles
	Slide 28: PostgreSQL Superuser
	Slide 29: PostgreSQL Superuser
	Slide 30: PostgreSQL Superuser
	Slide 31: Most cloud providers do not provide superuser access
	Slide 32: Superuser-like
	Slide 33: Superuser-like
	Slide 34: 04/07 Privileges
	Slide 35
	Slide 37: Privileges
	Slide 38: PostgreSQL 15 Privileges
	Slide 39: PUBLIC Role
	Slide 40: Security Best Practice for PUBLIC
	Slide 41: Granting Privileges
	Slide 42: Granting Privileges
	Slide 43: More Detail on GRANT and REVOKE
	Slide 44: 05/07 Inheritance
	Slide 45: Privilege Inheritance
	Slide 46: Granting Privileges
	Slide 47
	Slide 48
	Slide 49: 06/07 Object Ownership
	Slide 50
	Slide 51: Object Ownership
	Slide 52
	Slide 53
	Slide 54: Default Privileges
	Slide 55: Providing Object Access
	Slide 56: Object Ownership Security
	Slide 57: DEMO
	Slide 58: 07/07 Predefined Roles
	Slide 59: Predefined Roles
	Slide 60
	Slide 61: What Questions do you have?
	Slide 62: 🎉 THANK YOU! 🎉 github.com/ryanbooz/presentations

